Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Farhan R. Khan is active.

Publication


Featured researches published by Farhan R. Khan.


Environmental Science & Technology | 2011

Cellular Internalization of Silver Nanoparticles in Gut Epithelia of the Estuarine Polychaete Nereis diversicolor

Javier García-Alonso; Farhan R. Khan; Superb K. Misra; Mark Turmaine; Brian D. Smith; Philip S. Rainbow; Samuel N. Luoma; Eugenia Valsami-Jones

Silver nanoparticles (AgNPs) are widely used which may result in environmental impacts, notably within aquatic ecosystems. As estuarine sediments are sinks for numerous pollutants, but also habitat and food for deposit feeders such as Nereis diversicolor, ingested sediments must be investigated as an important route of uptake for NPs. N. diversicolor were fed sediment spiked with either citrate capped AgNPs (30 ± 5 nm) or aqueous Ag for 10 days. Postexposure AgNPs were observed in the lumen of exposed animals, and three lines of evidence indicated direct internalization of AgNPs into the gut epithelium. With TEM, electron-dense particles resembling AgNPs were observed associated with the apical plasma membrane, in endocytotic pits and in endosomes. Energy dispersive X-ray analysis (EDX) confirmed the presence of Ag in these particles, which were absent in controls. Subcellular fractionation revealed that Ag accumulated from AgNPs was predominantly associated with inorganic granules, organelles, and the heat denatured proteins; whereas dissolved Ag was localized to the metallothionein fraction. Collectively, these results indicate separate routes of cellular internalization and differing in vivo fates of Ag delivered in dissolved and NP form. For AgNPs an endocytotic pathway appears to be a key route of cellular uptake.


Environmental Science & Technology | 2012

Bioaccumulation dynamics and modeling in an estuarine invertebrate following aqueous exposure to nanosized and dissolved silver.

Farhan R. Khan; Superb K. Misra; Javier García-Alonso; Brian D. Smith; Stanislav Strekopytov; Philip S. Rainbow; Samuel N. Luoma; Eugenia Valsami-Jones

Predicting the environmental impact of engineered nanomaterials (ENMs) is increasingly important owing to the prevalence of emerging nanotechnologies. We derived waterborne uptake and efflux rate constants for the estuarine snail, Peringia ulvae, exposed to dissolved Ag (AgNO(3)) and silver nanoparticles (Ag NPs), using biodynamic modeling. Uptake rates demonstrated that dissolved Ag is twice as bioavailable as Ag in nanoparticle form. Biphasic loss dynamics revealed the faster elimination of Ag from Ag NPs at the start of depuration, but similar slow efflux rate constants. The integration of biodynamic parameters into our model accurately predicted Ag tissue burdens during chronic exposure with 85% of predicted values within a factor of 2 of observed values. Zeta potentials for the Ag NPs were lower in estuarine waters than in waters of less salinity; and uptake rates in P. ulvae were slower than reported for the freshwater snail Lymnaea stagnalis in similar experiments. This suggests aggregation of Ag NPs occurs in estuarine waters and reduces, but does not eliminate, bioavailability of Ag from the Ag NPs. Biodynamic modeling provides an effective methodology to determine bioavailable metal concentrations (originating from metal and metal-oxide nanoparticles) in the environment and may aid future ENM risk assessment.


Chemosphere | 2014

In vivo retention of ingested Au NPs by Daphnia magna: No evidence for trans-epithelial alimentary uptake

Farhan R. Khan; Gabrielle M. Kennaway; Marie-Noële Croteau; Agnieszka Dybowska; Brian D. Smith; António Nogueira; Philip S. Rainbow; Samuel N. Luoma; Eugenia Valsami-Jones

In vivo studies with Daphnia magna remain inconclusive as to whether engineered nanoparticles (NPs) are internalized into tissues after ingestion. Here we used a three-pronged approach to study the in vivo retention and efflux kinetics of 20 nm citrate stabilized Au NPs ingested by this key aquatic species. Daphnids were exposed to suspended particles (600 μg L(-1)) for 5 h after which they were depurated for 24 h in clean water containing algae. Light microscopy was used to follow the passage of Au NPs through the gastrointestinal tract, Au body burdens were determined by ICP-MS (inductively coupled plasma mass spectrometry), and transmission electron microscopy (TEM) was used to examine the presence and distribution of Au NPs in tissues. Results revealed that the elimination of Au NPs was bi-phasic. The fast elimination phase lasted<1h and the rate constant at which Au (of Au NPs) was eliminated was 1.12 ± 0.34 h(-1) (±SE) which accounted for ∼75% of the ingested Au. The remaining ∼25% of the ingested Au NPs was eliminated at a 100-fold slower rate. TEM analysis revealed that Au NPs in the midgut were in close proximity to the peritrophic membrane after 1 and 24h of depuration. There were no observations of Au NP uptake at the microvilli. Thus, although Au NPs were retained in the gut lumen, there was no observable internalization into the gut epithelial cells. Similar to carbon nanotubes and CuO NPs, our findings indicate that in daphnids the in vivo retention of Au NPs does not necessarily result in their internalization.


Environmental Science & Technology | 2015

Accumulation dynamics and acute toxicity of silver nanoparticles to daphnia magna and lumbriculus variegatus: Implications for metal modeling approaches

Farhan R. Khan; Kai B. Paul; Agnieszka Dybowska; Eugenia Valsami-Jones; Jamie R. Lead; Vicki Stone; Teresa F. Fernandes

Frameworks commonly used in trace metal ecotoxicology (e.g., biotic ligand model (BLM) and tissue residue approach (TRA)) are based on the established link between uptake, accumulation and toxicity, but similar relationships remain unverified for metal-containing nanoparticles (NPs). The present study aimed to (i) characterize the bioaccumulation dynamics of PVP-, PEG-, and citrate-AgNPs, in comparison to dissolved Ag, in Daphnia magna and Lumbriculus variegatus; and (ii) investigate whether parameters of bioavailability and accumulation predict acute toxicity. In both species, uptake rate constants for AgNPs were ∼ 2-10 times less than for dissolved Ag and showed significant rank order concordance with acute toxicity. Ag elimination by L. variegatus fitted a 1-compartment loss model, whereas elimination in D. magna was biphasic. The latter showed consistency with studies that reported daphnids ingesting NPs, whereas L. variegatus biodynamic parameters indicated that uptake and efflux were primarily determined by the bioavailability of dissolved Ag released by the AgNPs. Thus, principles of BLM and TRA frameworks are confounded by the feeding behavior of D. magna where the ingestion of AgNPs perturbs the relationship between tissue concentrations and acute toxicity, but such approaches are applicable when accumulation and acute toxicity are linked to dissolved concentrations. The uptake rate constant, as a parameter of bioavailability inclusive of all available pathways, could be a successful predictor of acute toxicity.


Aquatic Toxicology | 2011

Differential tolerance of two Gammarus pulex populations transplanted from different metallogenic regions to a polymetal gradient

Farhan R. Khan; Jennifer R. Irving; Nicolas R. Bury; Christer Hogstrand

The River Hayle, Cornwall, UK exhibits pronounced Cu and Zn concentration gradients which were used to compare the metal handling abilities of two populations of Gammarus pulex (Crustacea: Amphipoda). One population was native to the Hayle region (Drym) and presumably has been historically impacted by elevated Cu and Zn levels, whilst naïve gammarids were collected from the River Cray, Kent, UK. Both populations were subject to a 32 day in situ exposure at four R. Hayle sites (Drym, Godolphin, Relubbus and St. Erth). Mortality (LT50), Cu and Zn accumulation and sub-cellular distribution, and oxidative stress (malondialdehyde production) increased with the expected Cu and Zn bioavailabilities at the four sites (i.e. Godolphin>Relubbus>St. Erth>Drym). The naïve population experienced greater metal induced effects in terms of Cu and Zn accumulation, oxidative stress responses and lower LT50s. Analysis of Cu and Zn sub-cellular distribution, however, revealed no significant differences in metal handling. In both populations each metal was localised predominantly to the sub-cellular fraction containing metal bound to metallothionein-like proteins (MTLP) or that holding both metal-rich granules (MRG) and exoskeleton, MTLP and MRG binding being indicative of metal detoxification. However, a greater capacity for detoxified metal storage is not a mechanism implicated in the perceived tolerance of the historically impacted gammarids. Instead our results suggest that the historically impacted population was adapted for lower uptake of Cu and Zn leading to lower bioaccumulation, stress response and ultimately mortality. These results demonstrate not only the usefulness of the in situ methodology, but also that differences in population exposure history can cause significant differences in metal responses during exposure at higher concentrations.


Environmental Science & Technology | 2013

Stable isotope tracer to determine uptake and efflux dynamics of ZnO nano- and bulk particles and dissolved Zn to an estuarine snail

Farhan R. Khan; Adam Laycock; Agnieszka Dybowska; Fiona Larner; Brian D. Smith; Philip S. Rainbow; Samuel N. Luoma; Mark Rehkämper; Eugenia Valsami-Jones

Zinc oxide nanoparticles (ZnO NPs) are among the most commercialized engineered nanomaterials. Their biological impact in aquatic organisms has been associated with dissolution, but there is also evidence of nanospecific effects. In this study the waterborne uptake and efflux kinetics of isotopically labeled (68)ZnO NPs (7.8 ± 1.2 nm), in comparison to aqueous (68)Zn and (68)ZnO bulk particles (up to 2 μm), were determined for the estuarine snail Peringia ulvae following a 7 d exposure (nominally 20 μg (68)Zn L(-1)) and 28 d depuration. Detection of the (68)Zn label was achieved by high precision multiple-collector ICP-MS (MC-ICP-MS). Previous characterization in artificial estuarine water revealed that the NPs underwent initial aggregation and solubilized up to 60% within 1-2 days. Bulk and aqueous forms were significantly more bioavailable than (68)ZnO NPs (p < 0.05), but after correcting for dissolution, aqueous (0.074 L(-1) g(-1) d(-1)) and NP (0.070 L(-1) g(-1) d(-1)) uptake rate constants were highly comparable. The rate constant of loss for (68)Zn aqueous (0.012 ± 0.005 d(-1)) and (68)ZnO NPs (0.012 ± 0.007 d(-1)) were identical. These results strongly suggest that in this exposure scenario the bioaccumulation of Zn from ZnO NPs is primarily dependent upon solubility.


Environmental Science & Technology | 2012

Application of Biotic Ligand and Toxic Unit Modeling Approaches to Predict Improvements in Zooplankton Species Richness in Smelter- Damaged Lakes near Sudbury, Ontario

Farhan R. Khan; W. Keller; Norman D. Yan; Paul G. Welsh; Chris M. Wood; James C. McGeer

Using a 30-year record of biological and water chemistry data collected from seven lakes near smelters in Sudbury (Ontario, Canada) we examined the link between reductions of Cu, Ni, and Zn concentrations and zooplankton species richness. The toxicity of the metal mixtures was assessed using an additive Toxic Unit (TU) approach. Four TU models were developed based on total metal concentrations (TM-TU); free ion concentrations (FI-TU); acute LC50s calculated from the Biotic Ligand Model (BLM-TU); and chronic LC50s (acute LC50s adjusted by metal-specific acute-to-chronic ratios, cBLM-TU). All models significantly correlated reductions in metal concentrations to increased zooplankton species richness over time (p < 0.01) with a rank based on r(2) values of cBLM-TU > BLM-TU = FI-TU > TM-TU. Lake-wise comparisons within each model showed that the BLM-TU and cBLM-TU models provided the best description of recovery across all seven lakes. These two models were used to calculate thresholds for chemical and biological recovery using data from reference lakes in the same region. A threshold value of TU = 1 derived from the cBLM-TU provided the most accurate description of recovery. Overall, BLM-based TU models that integrate site-specific water chemistry-derived estimates of toxicity offer a useful predictor of biological recovery.


Environmental Pollution | 2015

Bioaccumulation and oxidative stress responses measured in the estuarine ragworm (Nereis diversicolor) exposed to dissolved, nano- and bulk-sized silver

Margherita Cozzari; Antonia Concetta Elia; Nicole Pacini; Brian D. Smith; David Boyle; Philip S. Rainbow; Farhan R. Khan

The impact of Ag NPs on sediment-dwelling organisms has received relatively little attention, particularly in linking bioaccumulation to oxidative injury. The polychaete Nereis diversicolor was exposed to sediments spiked with dissolved Ag (added as AgNO3), Ag NPs (63 ± 27 nm) and larger bulk Ag particles (202 ± 56 μm), for up to 11 days at sublethal concentrations (nominally 2.5, 5, 10 μg Ag g(-1) sediment (dw)). There were concentration- and time-dependent differences in the accumulation of the three Ag forms, but all three forms elicited an oxidative stress response. In the cases of Ag NPs and bulk Ag particles, changes in antioxidant markers (glutathione, SOD, CAT, GPx, SeGPx, GST and GR) occurred without significant Ag accumulation. Differences in biomarker profiles between the three Ag forms suggest that the mechanism of oxidative stress caused by particulate Ag is distinct from that of dissolved Ag.


Nanotoxicology | 2015

Inhibition of potential uptake pathways for silver nanoparticles in the estuarine snail Peringia ulvae

Farhan R. Khan; Superb K. Misra; Nicolas R. Bury; Brian D. Smith; Philip S. Rainbow; Samuel N. Luoma; Eugenia Valsami-Jones

Abstract Mechanisms involved in the uptake of Ag NPs, and NPs in general, have been long debated within nano-ecotoxicology. In vitro studies provide evidence of the different available uptake pathways, but in vivo demonstrations are lacking. In this study, pharmacological inhibitors were employed to block specific uptake pathways that have been implicated in the transport of metal NPs and aqueous metal forms; phenamil (inhibits Na+ channel), bafilomycin A1 (H+ proton pump), amantadine (clathrin-mediated endocytosis), nystatin (caveolae-mediated endocytosis) and phenylarsine oxide (PAO, macropinocytosis). Peringia ulvae (snails) were exposed to 150 µg Ag L−1 added as citrate capped Ag NPs or aqueous Ag (AgNO3) in combination with inhibitor treatment (determined by preliminary studies). Reductions in accumulated tissue burdens caused by the inhibitors were compared to control exposures (i.e. no inhibition) after 6 and 24 h. No inhibitor treatment completely eliminated the uptake of Ag in either aqueous or NP form, but all inhibitor treatments, except phenamil, significantly reduced the uptake of Ag presented as Ag NPs. Clathrin- and caveolae-mediated endocytosis appear to be mechanisms exploited by Ag NPs, with the latter pathway only active at 24 h. Inhibition of the H+ proton pump showed that a portion of Ag NP uptake is achieved as aqueous Ag and is explained by the dissolution of the particles (∼25% in 24 h). This in vivo study demonstrates that uptake of Ag from Ag NPs is achieved by multiple pathways and that these pathways are simultaneously active.


Environmental Chemistry | 2015

Characterisation of bioaccumulation dynamics of three differently coated silver nanoparticles and aqueous silver in a simple freshwater food chain

Judit Kalman; Kai B. Paul; Farhan R. Khan; Vicki Stone; Teresa F. Fernandes

Environmental context Nanoparticles may be passed from primary producers to predators higher up the food chain, but little is currently known about this transfer. We studied the accumulation dynamics of silver nanoparticles by algae, and then from algae to zooplankton. Using the biodynamic approach, we reconstructed the accumulation process to show that diet is the primary route of uptake for silver nanoparticles. Abstract This study investigated the bioaccumulation dynamics of silver nanoparticles (Ag NPs) with different coatings (polyvinyl pyrrolidone, polyethylene glycol and citrate), in comparison with aqueous Ag (added as AgNO3), in a simplified freshwater food chain comprising the green alga Chlorella vulgaris and the crustacean Daphnia magna. Algal uptake rate constants (ku) and membrane transport characteristics (binding site density, transporter affinity and strength of binding) were determined after exposing algae to a range of either aqueous Ag or Ag NP concentrations. In general, higher ku values were related to higher toxicity in the algae. Transmission electron microscopy images were used to investigate the internalisation of Ag NPs in algal cells following exposure to low concentrations for 72h (mimicking inhibition tests) or high concentrations for 4h (mimicking preparation for daphnia dietary exposure). Ag NPs were only visualised in algal cells exposed to high Ag NP concentrations. To establish D. magna biodynamic model constants, organisms were fed Ag-contaminated algae and depurated for 96h. Assimilation efficiencies ranged from 10 to 25% and the elimination of accumulated Ag followed a two-compartmental model, indicating lower loss rate constants for polyvinyl pyrrolidone-, and polyethylene glycol-coated Ag NPs. Biodynamic model results revealed that in most cases, food is the dominant pathway of Ag uptake in D. magna. Despite the predicted low steady-state body burdens in D. magna, dietary uptake of Ag was possible from aqueous and particulate forms of Ag.

Collaboration


Dive into the Farhan R. Khan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian D. Smith

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agnieszka Dybowska

American Museum of Natural History

View shared research outputs
Researchain Logo
Decentralizing Knowledge