Farhan Riaz
National University of Sciences and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Farhan Riaz.
IEEE Signal Processing Letters | 2013
Farhan Riaz; Ali Hassan; Saad Rehman; Usman Qamar
This letter introduces a novel approach to rotation and scale invariant texture classification. The proposed approach is based on Gabor filters that have the capability to collapse the filter responses according to the scale and orientation of the textures. These characteristics are exploited to first calculate the homogeneous texture of images followed by the rearrangement of features as a two-dimensional matrix (scale and orientation), where scaling and rotation of images correspond to shifting in this matrix. The shift invariance property of discrete fourier transform is used to propose rotation and scale invariant image features. The performance of the proposed feature set is evaluated on Brodatz texture album. Experimental results demonstrate the superiority of the proposed descriptor as compared to other methods considered in this letter.
IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2016
Farhan Riaz; Ali Hassan; Saad Rehman; Imran Khan Niazi; Kim Dremstrup
This paper presents a novel method for feature extraction from electroencephalogram (EEG) signals using empirical mode decomposition (EMD). Its use is motivated by the fact that the EMD gives an effective time-frequency analysis of nonstationary signals. The intrinsic mode functions (IMF) obtained as a result of EMD give the decomposition of a signal according to its frequency components. We present the usage of upto third order temporal moments, and spectral features including spectral centroid, coefficient of variation and the spectral skew of the IMFs for feature extraction from EEG signals. These features are physiologically relevant given that the normal EEG signals have different temporal and spectral centroids, dispersions and symmetries when compared with the pathological EEG signals. The calculated features are fed into the standard support vector machine (SVM) for classification purposes. The performance of the proposed method is studied on a publicly available dataset which is designed to handle various classification problems including the identification of epilepsy patients and detection of seizures. Experiments show that good classification results are obtained using the proposed methodology for the classification of EEG signals. Our proposed method also compares favorably to other state-of-the-art feature extraction methods.
IEEE Transactions on Biomedical Engineering | 2012
Farhan Riaz; Francisco Baldaque Silva; Mario Dinis Ribeiro; Miguel Tavares Coimbra
Automatic classification of lesions for gastroenterology imaging scenarios poses novel challenges to computer-assisted decision systems, which are mostly attributed to the dynamics of the image acquisition conditions. Such challenges demand that automatic systems are able to give robust characterizations of tissues irrespective of camera rotation, zoom, and illumination gradients when viewing the inner surface of the gastrointestinal tract. In this paper, we study the invariance properties of Gabor filters and propose a novel descriptor, the autocorrelation Gabor features (AGF). We show that our proposed AGF is invariant to scale, rotation, and illumination changes in the images. We integrate these new features in a texton framework (Texton-AGF) to classify images from two complementary gastroenterology imaging scenarios (chromoendoscopy and narrow-band imaging) broadly into three different groups: normal, precancerous, and cancerous. Results show that they compare favorably to using state-of-the-art texture descriptors for both imaging modalities.
IEEE Transactions on Biomedical Engineering | 2013
Farhan Riaz; Francisco Baldaque Silva; Mario Dinis Ribeiro; Miguel Tavares Coimbra
Gastroenterology imaging is an essential tool to detect gastrointestinal cancer in patients. Computer-assisted diagnosis is desirable to help us improve the reliability of this detection. However, traditional computer vision methodologies, mainly segmentation, do not translate well to the specific visual characteristics of a gastroenterology imaging scenario. In this paper, we propose a novel method for the segmentation of gastroenterology images from two distinct imaging modalities and organs: chromoendoscopy (CH) and narrow-band imaging (NBI) from stomach and esophagus, respectively. We have used various visual features individually and their combinations (edgemaps, creaseness, and color) in normalized cuts image segmentation framework to segment ground truth datasets of 142 CH and 224 NBI images. Experiments show that an integration of edgemaps and creaseness in normalized cuts gives the best segmentation performance resulting in high-quality segmentations of the gastroenterology images.
international conference of the ieee engineering in medicine and biology society | 2009
Farhan Riaz; Mario Dinis Ribeiro; Miguel Tavares Coimbra
In this paper, we present a numerical comparison of how well segmentation algorithms approximate the manual segmentation of gastroenterologists for a set of endoscopic images. Different areas in these images demand different levels of analysis by a clinician and some provide critical information about the patient. Our objective is thus to segment endoscopic images so that the results mimic as closely as possible the areas that were considered relevant by doctors. We focus on a detailed quantitative comparison of two popular segmentation algorithms, mean shift and normalized cuts, when applied to in-body images, most specifically for vital-stained magnification endoscopy. Segmentation results are compared with the manual annotations of the same images performed by two specialist clinicians. Results show that if we simply consider the most relevant segmented patch, normalized cuts performs better. However, if we allow the annotated area to be represented by multiple patches, mean shift is clearly a better choice, although automatic ways to determine its kernels bandwidth are highly desirable.
Journal of Experimental and Theoretical Artificial Intelligence | 2015
Sheeraz Akram; Muhammad Younus Javed; Ayyaz Hussain; Farhan Riaz; M. Usman Akram
A computer-aided diagnostic (CAD) system for effective and accurate pulmonary nodule detection is required to detect the nodules at early stage. This paper proposed a novel technique to detect and classify pulmonary nodules based on statistical features for intensity values using support vector machine (SVM). The significance of the proposed technique is, it uses the nodules features in 2D & 3D and also SVM for the classification that is good to classify the nodules extracted from the image. The lung volume is extracted from Lung CT using thresholding, background removal, hole-filling and contour correction of lung lobe. The candidate nodules are extracted and pruned using the rules based on ground truth of nodules. The statistical features for intensity values are extracted from candidate nodules. The nodule data are up-samples to reduce the biasness. The classifier SVM is trained using data samples. The efficiency of proposed CAD system is tested and evaluated using Lung Image Consortium Database (LIDC) that is standard data-set used in CAD Systems for Lungs Nodule classification. The results obtained from proposed CAD system are good as compare to previous CAD systems. The sensitivity of 96.31% is achieved in the proposed CAD system.
IEEE Journal of Biomedical and Health Informatics | 2017
Farhan Riaz; Ali Hassan; Rida Nisar; Mário Dinis-Ribeiro; Miguel Tavares Coimbra
The design of computer-assisted decision (CAD) systems for different biomedical imaging scenarios is a challenging task in computer vision. Sometimes, this challenge can be attributed to the image acquisition mechanisms since the lack of control on the cameras can create different visualizations of the same imaging site under different rotation, scaling, and illumination parameters, with a requirement to get a consistent diagnosis by the CAD systems. Moreover, the images acquired from different sites have specific colors, making the use of standard color spaces highly redundant. In this paper, we propose to tackle these issues by introducing novel region-based texture, and color descriptors. The proposed texture features are based on the usage of analytic Gabor filters (for compensation of illumination variations) followed by the calculation of first- and second-order statistics of the filter responses and making them invariant using some trivial mathematical operators. The proposed color features are obtained by compensating for the illumination variations in the images using homomorphic filtering followed by a bag-of-words approach to obtain the most typical colors in the images. The proposed features are used for the identification of cancer in images from two distinct imaging modalities, i.e., gastroenterology and dermoscopy . Experiments demonstrate that the proposed descriptors compares favorably to several other state-of-the-art methods, elucidating on the effectiveness of adapted features for image characterization.
international conference of the ieee engineering in medicine and biology society | 2014
Farhan Riaz; Ali Hassan; Muhammad Younis Javed; Miguel Tavares Coimbra
Recent advances in the area of computer vision has led to the development of various assisted diagnostics systems for the detection of melanoma in the patients. Texture and color are considered as two fundamental visual characteristics which are vital for the detection of melanoma. This paper proposes the use of a combination of texture and color features for the classification of dermoscopy images. The texture features consist of a variation of local binary pattern (LBP) in which the strength of the LBPs is used to extract scale adaptive patterns at each pixel, followed by the construction of a histogram. For color feature extraction, we used standard HSV histograms. The extracted features are concatenated to form a feature vector for an image, followed by classification using support vector machines. Experiments show that the proposed feature set exhibits good classification performance comparing favorably to other state-of-the-art alternatives.
international symposium on biomedical imaging | 2011
Farhan Riaz; Miguel Areia; F. Baldaque Silva; Mário Dinis-Ribeiro; P. Pimentel Nunes; Miguel Tavares Coimbra
Automatic classification of cancer lesions for gastroenterology imaging scenarios poses novel challenges to computer assisted decision systems, owing to their distinct visual characteristics such as reduced color spaces or natural organic textures. In this paper, we explore the prospects of using Gabor filters in a texton framework for the classification of images from two distinct imaging modalities (chromoendoscopy and narrow-band imaging) into three different groups: normal, precancerous and cancerous. Results show that they produce consistent results for both imaging modalities, hinting on their possible generic use for the classification of in-body images.
IEEE Signal Processing Letters | 2014
Ali Hassan; Farhan Riaz; Arslan Shaukat
In this letter, we propose to tackle rotation and scale variance in texture classification at the machine learning level. This is achieved by using image descriptors that interpret these variations as shifts in the feature vector. We model these variations as a covariate shift in the data. This shift is then reduced by minimising the Kullback-Leibler divergence between the true and estimated distributions using importance weights (IW). These IWs are used in support vector machines (SVMs) to formulate the IW-SVMs. The experimental results show that IW-SVMs exhibit good invariance characteristics and outperform other state-of-the-art classification methods. The proposed methodology gives a generic solution that can be applied to any texture descriptor that models the transformations as a shift in the feature vector.