Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Farideh Sabeh is active.

Publication


Featured researches published by Farideh Sabeh.


Journal of Cell Biology | 2004

Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP

Farideh Sabeh; Ichiro Ota; Kenn Holmbeck; Henning Birkedal-Hansen; Paul D. Soloway; Milagros Balbín; Carlos López-Otín; Steven D. Shapiro; Masaki Inada; Stephen M. Krane; Edward D. Allen; Duane A. Chung; Stephen J. Weiss

As cancer cells traverse collagen-rich extracellular matrix (ECM) barriers and intravasate, they adopt a fibroblast-like phenotype and engage undefined proteolytic cascades that mediate invasive activity. Herein, we find that fibroblasts and cancer cells express an indistinguishable pericellular collagenolytic activity that allows them to traverse the ECM. Using fibroblasts isolated from gene-targeted mice, a matrix metalloproteinase (MMP)–dependent activity is identified that drives invasion independently of plasminogen, the gelatinase A/TIMP-2 axis, gelatinase B, collagenase-3, collagenase-2, or stromelysin-1. In contrast, deleting or suppressing expression of the membrane-tethered MMP, MT1-MMP, in fibroblasts or tumor cells results in a loss of collagenolytic and invasive activity in vitro or in vivo. Thus, MT1-MMP serves as the major cell-associated proteinase necessary to confer normal or neoplastic cells with invasive activity.


Journal of Cell Biology | 2009

Protease-dependent versus-independent cancer cell invasion programs: Three-dimensional amoeboid movement revisited

Farideh Sabeh; Ryoko Shimizu-Hirota; Stephen J. Weiss

Tissue invasion during metastasis requires cancer cells to negotiate a stromal environment dominated by cross-linked networks of type I collagen. Although cancer cells are known to use proteinases to sever collagen networks and thus ease their passage through these barriers, migration across extracellular matrices has also been reported to occur by protease-independent mechanisms, whereby cells squeeze through collagen-lined pores by adopting an ameboid phenotype. We investigate these alternate models of motility here and demonstrate that cancer cells have an absolute requirement for the membrane-anchored metalloproteinase MT1-MMP for invasion, and that protease-independent mechanisms of cell migration are only plausible when the collagen network is devoid of the covalent cross-links that characterize normal tissues.


Cell | 2006

A Pericellular Collagenase Directs the 3-Dimensional Development of White Adipose Tissue

Tae Hwa Chun; Kevin B. Hotary; Farideh Sabeh; Alan R. Saltiel; Edward D. Allen; Stephen J. Weiss

White adipose tissue (WAT) serves as the primary energy depot in the body by storing fat. During development, fat cell precursors (i.e., preadipocytes) undergo a hypertrophic response as they mature into lipid-laden adipocytes. However, the mechanisms that regulate adipocyte size and mass remain undefined. Herein, we demonstrate that the membrane-anchored metalloproteinase, MT1-MMP, coordinates adipocyte differentiation in vivo. In the absence of the protease, WAT development is aborted, leaving tissues populated by mini-adipocytes which render null mice lipodystrophic. While MT1-MMP preadipocytes display a cell autonomous defect in vivo, null progenitors retain the ability to differentiate into functional adipocytes during 2-dimensional (2-D) culture. By contrast, within the context of the 3-dimensional (3-D) ECM, normal adipocyte maturation requires a burst in MT1-MMP-mediated proteolysis that modulates pericellular collagen rigidity in a fashion that controls adipogenesis. Hence, MT1-MMP acts as a 3-D-specific adipogenic factor that directs the dynamic adipocyte-ECM interactions critical to WAT development.


Journal of Cell Biology | 2004

MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix.

Tae Hwa Chun; Farideh Sabeh; Ichiro Ota; Hedwig S. Murphy; Kevin T. McDonagh; Kenn Holmbeck; Henning Birkedal-Hansen; Edward D. Allen; Stephen J. Weiss

During angiogenesis, endothelial cells initiate a tissue-invasive program within an interstitial matrix comprised largely of type I collagen. Extracellular matrix–degradative enzymes, including the matrix metalloproteinases (MMPs) MMP-2 and MMP-9, are thought to play key roles in angiogenesis by binding to docking sites on the cell surface after activation by plasmin- and/or membrane-type (MT) 1-MMP–dependent processes. To identify proteinases critical to neovessel formation, an ex vivo model of angiogenesis has been established wherein tissue explants from gene-targeted mice are embedded within a three-dimensional, type I collagen matrix. Unexpectedly, neither MMP-2, MMP-9, their cognate cell-surface receptors (i.e., β3 integrin and CD44), nor plasminogen are essential for collagenolytic activity, endothelial cell invasion, or neovessel formation. Instead, the membrane-anchored MMP, MT1-MMP, confers endothelial cells with the ability to express invasive and tubulogenic activity in a collagen-rich milieu, in vitro or in vivo, where it plays an indispensable role in driving neovessel formation.


Journal of Experimental Medicine | 2002

Matrix Metalloproteinases (MMPs) Regulate Fibrin-invasive Activity via MT1-MMP–dependent and –independent Processes

Kevin B. Hotary; Ikuo Yana; Farideh Sabeh; Xiao Yan Li; Kenn Holmbeck; Henning Birkedal-Hansen; Edward D. Allen; Nobuaki Hiraoka; Stephen J. Weiss

Cross-linked fibrin is deposited in tissues surrounding wounds, inflammatory sites, or tumors and serves not only as a supporting substratum for trafficking cells, but also as a structural barrier to invasion. While the plasminogen activator-plasminogen axis provides cells with a powerful fibrinolytic system, plasminogen-deleted animals use alternate proteolytic processes that allow fibrin invasion to proceed normally. Using fibroblasts recovered from wild-type or gene-deleted mice, invasion of three-dimensional fibrin gels proceeded in a matrix metalloproteinase (MMP)-dependent fashion. Consistent with earlier studies supporting a singular role for the membrane-anchored MMP, MT1-MMP, in fibrin-invasive events, fibroblasts from MT1-MMP–null mice displayed an early defect in invasion. However, MT1-MMP–deleted fibroblasts circumvented this early deficiency and exhibited compensatory fibrin-invasive activity. The MT1-MMP–independent process was sensitive to MMP inhibitors that target membrane-anchored MMPs, and further studies identified MT2-MMP and MT3-MMP, but not MT4-MMP, as alternate pro-invasive factors. Given the widespread distribution of MT1-, 2-, and 3-MMP in normal and neoplastic cells, these data identify a subset of membrane-anchored MMPs that operate in an autonomous fashion to drive fibrin-invasive activity.


Journal of Biological Chemistry | 2009

Secreted Versus Membrane-anchored Collagenases RELATIVE ROLES IN FIBROBLAST-DEPENDENT COLLAGENOLYSIS AND INVASION

Farideh Sabeh; Xiao Yan Li; Thomas L. Saunders; R. Grant Rowe; Stephen J. Weiss

Fibroblasts degrade type I collagen, the major extracellular protein found in mammals, during events ranging from bulk tissue resorption to invasion through the three-dimensional extracellular matrix. Current evidence suggests that type I collagenolysis is mediated by secreted as well as membrane-anchored members of the matrix metalloproteinase (MMP) gene family. However, the roles played by these multiple and possibly redundant, degradative systems during fibroblast-mediated matrix remodeling is undefined. Herein, we use fibroblasts isolated from Mmp13−/−, Mmp8−/−, Mmp2−/−, Mmp9−/−, Mmp14−/− and Mmp16−/− mice to define the functional roles for secreted and membrane-anchored collagenases during collagen-resorptive versus collagen-invasive events. In the presence of a functional plasminogen activator-plasminogen axis, secreted collagenases arm cells with a redundant collagenolytic potential that allows fibroblasts harboring single deficiencies for either MMP-13, MMP-8, MMP-2, or MMP-9 to continue to degrade collagen comparably to wild-type fibroblasts. Likewise, Mmp14−/− or Mmp16−/− fibroblasts retain near-normal collagenolytic activity in the presence of plasminogen via the mobilization of secreted collagenases, but only Mmp14 (MT1-MMP) plays a required role in the collagenolytic processes that support fibroblast invasive activity. Furthermore, by artificially tethering a secreted collagenase to the surface of Mmp14−/− fibroblasts, we demonstrate that localized pericellular collagenolytic activity differentiates the collagen-invasive phenotype from bulk collagen degradation. Hence, whereas secreted collagenases arm fibroblasts with potent matrix-resorptive activity, only MT1-MMP confers the focal collagenolytic activity necessary for supporting the tissue-invasive phenotype.


Molecular Biology of the Cell | 2008

Molecular Dissection of the Structural Machinery Underlying the Tissue-invasive Activity of Membrane Type-1 Matrix Metalloproteinase

Xiao Yan Li; Ichiro Ota; Ikuo Yana; Farideh Sabeh; Stephen J. Weiss

Membrane type-1 matrix metalloproteinase (MT1-MMP) drives cell invasion through three-dimensional (3-D) extracellular matrix (ECM) barriers dominated by type I collagen or fibrin. Based largely on analyses of its impact on cell function under two-dimensional culture conditions, MT1-MMP is categorized as a multifunctional molecule with 1) a structurally distinct, N-terminal catalytic domain; 2) a C-terminal hemopexin domain that regulates substrate recognition as well as conformation; and 3) a type I transmembrane domain whose cytosolic tail controls protease trafficking and signaling cascades. The MT1-MMP domains that subserve cell trafficking through 3-D ECM barriers in vitro or in vivo, however, remain largely undefined. Herein, we demonstrate that collagen-invasive activity is not confined strictly to the catalytic, hemopexin, transmembrane, or cytosolic domain sequences of MT1-MMP. Indeed, even a secreted collagenase supports invasion when tethered to the cell surface in the absence of the MT1-MMP hemopexin, transmembrane, and cytosolic tail domains. By contrast, the ability of MT1-MMP to support fibrin-invasive activity diverges from collagenolytic potential, and alternatively, it requires the specific participation of MT-MMP catalytic and hemopexin domains. Hence, the tissue-invasive properties of MT1-MMP are unexpectedly embedded within distinct, but parsimonious, sequences that serve to tether the requisite matrix-degradative activity to the surface of migrating cells.


Journal of Immunology | 2010

Membrane-Type I Matrix Metalloproteinase-Dependent Regulation of Rheumatoid Arthritis Synoviocyte Function

Farideh Sabeh; David L. Fox; Stephen J. Weiss

In rheumatoid arthritis, the coordinated expansion of the synoviocyte mass is coupled with a pathologic angiogenic response that leads to the destructive remodeling of articular as well as surrounding connective tissues. Although rheumatoid synoviocytes express a multiplicity of proteolytic enzymes, the primary effectors of cartilage, ligament, and tendon damage remain undefined. Herein, we demonstrate that human rheumatoid synoviocytes mobilize the membrane-anchored matrix metalloproteinase (MMP), membrane-type I MMP (MT1-MMP), to dissolve and invade type I and type II collagen-rich tissues. Though rheumatoid synoviocytes also express a series of secreted collagenases, these proteinases are ineffective in mediating collagenolytic activity in the presence of physiologic concentrations of plasma- or synovial fluid-derived antiproteinases. Furthermore, MT1-MMP not only directs the tissue-destructive properties of rheumatoid synoviocytes but also controls synoviocyte-initiated angiogenic responses in vivo. Together, these findings indentify MT1-MMP as a master regulator of the pathologic extracellular matrix remodeling that characterizes rheumatoid arthritis as well as the coupled angiogenic response that maintains the aggressive phenotype of the advancing pannus.


Genes & Development | 2012

MT1-MMP regulates the PI3Kδ•Mi-2/NuRD-dependent control of macrophage immune function

Ryoko Shimizu-Hirota; Wanfen Xiong; B. Timothy Baxter; Steven L. Kunkel; Ivan Maillard; Xiao Wei Chen; Farideh Sabeh; Rui Liu; Xiao Yan Li; Stephen J. Weiss

Macrophages play critical roles in events ranging from host defense to obesity and cancer, where they infiltrate affected tissues and orchestrate immune responses in tandem with the remodeling of the extracellular matrix (ECM). Despite the dual roles played by macrophages in inflammation, the functions of macrophage-derived proteinases are typically relegated to tissue-invasive or -degradative events. Here we report that the membrane-tethered matrix metalloenzyme MT1-MMP not only serves as an ECM-directed proteinase, but unexpectedly controls inflammatory gene responses wherein MT1-MMP(-/-) macrophages mount exaggerated chemokine and cytokine responses to immune stimuli both in vitro and in vivo. MT1-MMP modulates inflammatory responses in a protease-independent fashion in tandem with its trafficking to the nuclear compartment, where it triggers the expression and activation of a phosphoinositide 3-kinase δ (PI3Kδ)/Akt/GSK3β signaling cascade. In turn, MT1-MMP-dependent PI3Kδ activation regulates the immunoregulatory Mi-2/NuRD nucleosome remodeling complex that is responsible for controlling macrophage immune response. These findings identify a novel role for nuclear MT1-MMP as a previously unsuspected transactivator of signaling networks central to macrophage immune responses.


Journal of Microscopy | 2013

Extracellular matrix determinants and the regulation of cancer cell invasion stratagems.

Amanda Willis; Farideh Sabeh; Xiao Yan Li; Stephen J. Weiss

During development, wound repair and disease‐related processes, such as cancer, normal, or neoplastic cell types traffic through the extracellular matrix (ECM), the complex composite of collagens, elastin, glycoproteins, proteoglycans, and glycosaminoglycans that dictate tissue architecture. Current evidence suggests that tissue‐invasive processes may proceed by protease‐dependent or protease‐independent strategies whose selection is not only governed by the characteristics of the motile cell population, but also by the structural properties of the intervening ECM. Herein, we review the mechanisms by which ECM dimensionality, elasticity, crosslinking, and pore size impact patterns of cell invasion. This summary should prove useful when designing new experimental approaches for interrogating invasion programs as well as identifying potential cellular targets for next‐generation therapeutics.

Collaboration


Dive into the Farideh Sabeh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao Yan Li

Life Sciences Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenn Holmbeck

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ichiro Ota

Nara Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge