Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Farshad Farshidfar is active.

Publication


Featured researches published by Farshad Farshidfar.


Genome Medicine | 2012

Serum metabolomic profile as a means to distinguish stage of colorectal cancer

Farshad Farshidfar; Aalim M. Weljie; Karen Kopciuk; W Don Buie; Anthony R. MacLean; Elijah Dixon; Francis Sutherland; Andrea Molckovsky; Hans J. Vogel; Oliver F. Bathe

BackgroundPresently, colorectal cancer (CRC) is staged preoperatively by radiographic tests, and postoperatively by pathological evaluation of available surgical specimens. However, present staging methods do not accurately identify occult metastases. This has a direct effect on clinical management. Early identification of metastases isolated to the liver may enable surgical resection, whereas more disseminated disease may be best treated with palliative chemotherapy.MethodsSera from 103 patients with colorectal adenocarcinoma treated at the same tertiary cancer center were analyzed by proton nuclear magnetic resonance (1H NMR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). Metabolic profiling was done using both supervised pattern recognition and orthogonal partial least squares-discriminant analysis (O-PLS-DA) of the most significant metabolites, which enables comparison of the whole sample spectrum between groups. The metabolomic profiles generated from each platform were compared between the following groups: locoregional CRC (N = 42); liver-only metastases (N = 45); and extrahepatic metastases (N = 25).ResultsThe serum metabolomic profile associated with locoregional CRC was distinct from that associated with liver-only metastases, based on 1H NMR spectroscopy (P = 5.10 × 10-7) and GC-MS (P = 1.79 × 10-7). Similarly, the serum metabolomic profile differed significantly between patients with liver-only metastases and with extrahepatic metastases. The change in metabolomic profile was most markedly demonstrated on GC-MS (P = 4.75 × 10-5).ConclusionsIn CRC, the serum metabolomic profile changes markedly with metastasis, and site of disease also appears to affect the pattern of circulating metabolites. This novel observation may have clinical utility in enhancing staging accuracy and selecting patients for surgical or medical management. Additional studies are required to determine the sensitivity of this approach to detect subtle or occult metastatic disease.


Cell Reports | 2017

Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

Farshad Farshidfar; Siyuan Zheng; Marie-Claude Gingras; Yulia Newton; Juliann Shih; A. Gordon Robertson; Toshinori Hinoue; Katherine A. Hoadley; Ewan A. Gibb; Jason Roszik; Kyle Covington; Chia Chin Wu; Eve Shinbrot; Nicolas Stransky; Apurva M. Hegde; Ju Dong Yang; Ed Reznik; Sara Sadeghi; Chandra Sekhar Pedamallu; Akinyemi I. Ojesina; Julian Hess; J. Todd Auman; Suhn Kyong Rhie; Reanne Bowlby; Mitesh J. Borad; Andrew X. Zhu; Josh Stuart; Chris Sander; Rehan Akbani; Andrew D. Cherniack

Summary Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance.


British Journal of Cancer | 2016

A validated metabolomic signature for colorectal cancer: exploration of the clinical value of metabolomics.

Farshad Farshidfar; Aalim M. Weljie; Karen Kopciuk; Robert J. Hilsden; McGregor Se; Buie Wd; Anthony R. MacLean; Hans J. Vogel; Oliver F. Bathe

Background:Timely diagnosis and classification of colorectal cancer (CRC) are hindered by unsatisfactory clinical assays. Our aim was to construct a blood-based biomarker series using a single assay, suitable for CRC detection, prognostication and staging.Methods:Serum metabolomic profiles of adenoma (N=31), various stages of CRC (N=320) and healthy matched controls (N=254) were analysed by gas chromatography-mass spectrometry (GC-MS). A diagnostic model for CRC was derived by orthogonal partial least squares-discriminant analysis (OPLS-DA) on a training set, and then validated on an independent data set. Metabolomic models suitable for identifying adenoma, poor prognosis stage II CRC and discriminating various stages were generated.Results:A diagnostic signature for CRC with remarkable multivariate performance (R2Y=0.46, Q2Y=0.39) was constructed, and then validated (sensitivity 85%; specificity 86%). Area under the receiver-operating characteristic curve was 0.91 (95% CI, 0.87–0.96). Adenomas were also detectable (R2Y=0.35, Q2Y=0.26, internal AUROC=0.81, 95% CI, 0.70–0.92). Also of particular interest, we identified models that stratified stage II by prognosis, and classified cases by stage.Conclusions:Using a single assay system, a suite of CRC biomarkers based on circulating metabolites enables early detection, prognostication and preliminary staging information. External population-based studies are required to evaluate the repeatability of our findings and to assess the clinical benefits of these biomarkers.


Metabolites | 2017

Urine and Serum Metabolomics Analyses May Distinguish between Stages of Renal Cell Carcinoma

Oluyemi S. Falegan; Mark W. Ball; Rustem Shaykhutdinov; Phillip M. Pieroraio; Farshad Farshidfar; Hans J. Vogel; Mohamad E. Allaf; Matthew E. Hyndman

Renal cell carcinoma (RCC) is a heterogeneous disease that is usually asymptomatic until late in the disease. There is an urgent need for RCC specific biomarkers that may be exploited clinically for diagnostic and prognostic purposes. Preoperative fasting urine and serum samples were collected from patients with clinical renal masses and assessed with 1H NMR and GCMS (gas chromatography-mass spectrometry) based metabolomics and multivariate statistical analysis. Alterations in levels of glycolytic and tricarboxylic acid (TCA) cycle intermediates were detected in RCC relative to benign masses. Orthogonal Partial Least Square Discriminant Analysis plots discriminated between benign vs. pT1 (R2 = 0.46, Q2 = 0.28; AUC = 0.83), benign vs. pT3 (R2 = 0.58, Q2 = 0.37; AUC = 0.87) for 1H NMR-analyzed serum and between benign vs. pT1 (R2 = 0.50, Q2 = 0.37; AUC = 0.83), benign vs. pT3 (R2 = 0.72, Q2 = 0.68, AUC = 0.98) for urine samples. Separation was observed between benign vs. pT3 (R2 = 0.63, Q2 = 0.48; AUC = 0.93), pT1 vs. pT3 (R2 = 0.70, Q2 = 0.54) for GCMS-analyzed serum and between benign vs. pT3 (R2Y = 0.87; Q2 = 0.70; AUC = 0.98) for urine samples. This pilot study suggests that urine and serum metabolomics may be useful in differentiating benign renal tumors from RCC and for staging RCC.


Metabolites | 2017

Distinguishing Benign from Malignant Pancreatic and Periampullary Lesions Using Combined Use of 1H-NMR Spectroscopy and Gas Chromatography–Mass Spectrometry

Yarrow J. McConnell; Farshad Farshidfar; Aalim M. Weljie; Karen Kopciuk; Elijah Dixon; Chad G. Ball; Francis Sutherland; Hans J. Vogel; Oliver F. Bathe

Previous work demonstrated that serum metabolomics can distinguish pancreatic cancer from benign disease. However, in the clinic, non-pancreatic periampullary cancers are difficult to distinguish from pancreatic cancer. Therefore, to test the clinical utility of this technology, we determined whether any pancreatic and periampullary adenocarcinoma could be distinguished from benign masses and biliary strictures. Sera from 157 patients with malignant and benign pancreatic and periampullary lesions were analyzed using proton nuclear magnetic resonance (1H-NMR) spectroscopy and gas chromatography–mass spectrometry (GC-MS). Multivariate projection modeling using SIMCA-P+ software in training datasets (n = 80) was used to generate the best models to differentiate disease states. Models were validated in test datasets (n = 77). The final 1H-NMR spectroscopy and GC-MS metabolomic profiles consisted of 14 and 18 compounds, with AUROC values of 0.74 (SE 0.06) and 0.62 (SE 0.08), respectively. The combination of 1H-NMR spectroscopy and GC-MS metabolites did not substantially improve this performance (AUROC 0.66, SE 0.08). In patients with adenocarcinoma, glutamate levels were consistently higher, while glutamine and alanine levels were consistently lower. Pancreatic and periampullary adenocarcinomas can be distinguished from benign lesions. To further enhance the discriminatory power of metabolomics in this setting, it will be important to identify the metabolomic changes that characterize each of the subclasses of this heterogeneous group of cancers.


Genes | 2014

From genotype to functional phenotype: unraveling the metabolomic features of colorectal cancer.

Oliver F. Bathe; Farshad Farshidfar

Much effort in recent years has been expended in defining the genomic and epigenetic alterations that characterize colorectal adenocarcinoma and its subtypes. However, little is known about the functional ramifications related to various subtypes. Metabolomics, the study of small molecule intermediates in disease, provides a snapshot of the functional phenotype of colorectal cancer. Data, thus far, have characterized some of the metabolic perturbations that accompany colorectal cancer. However, further studies will be required to identify biologically meaningful metabolic subsets, including those corresponding to specific genetic aberrations. Moreover, further studies are necessary to distinguish changes due to tumor and the host response to tumor.


Molecular & Cellular Proteomics | 2017

Novel allosteric pathway of Eg5 regulation identified through multivariate statistical analysis of HX-MS ligand screening data

Joey G. Sheff; Farshad Farshidfar; Oliver F. Bathe; Karen Kopciuk; Francesco Gentile; Jack A. Tuszynski; Khaled Barakat; David C. Schriemer

The mitotic kinesin Eg5 is an important target in cancer chemotherapy. A structurally diverse collection of canonical loop L5 inhibitors engage an allosteric pathway that includes elements of its microtubule binding region. However, recent evidence suggests that Eg5 may permit alternative allosteric mechanisms. Terpendole E, a natural-product Eg5 inhibitor, is active against mutants resistant to canonical loop L5 inhibitors and appears to offer a unique mode of inhibition. To investigate the variety of inhibitor responses, the structure-function properties of eighteen kinesin inhibitors were quantified with hydrogen-exchange mass spectrometry (HX-MS), functional analysis and molecular modeling. A unique strategy for high-density data analysis was implemented, based on a scalable multivariate statistical method, as current HX-MS routines have a limited capacity to guide a characterization of ligands when additional functional data is available. Inhibitor evaluation was achieved using orthogonal partial least squares projection to latent structures discriminant analysis (OPLS-DA). The strategy generated a model that identified functionally-significant conformational elements involved in kinesin inhibition, confirming the canonical allosteric pathway and identifying a novel response pathway. Terpendole E is demonstrated to be an atypical L5 site inhibitor, where binding induces an allosteric effect mediated by a destabilization in the β-sheet core of the molecular motor, an element involved in mechanochemical coupling for structurally-related kinesins. The analysis suggests that a different approach to inhibitor development may be fruitful.


Journal of Iron and Steel Research International | 2012

Effect of Chromite-Silica Sands Characteristics on Performance of Ladle Filler Sands for Continuous Casting

Farshad Farshidfar; M. Ghassemi Kakroudi

Free opening rate is mainly determined by the performance of the ladle filler sand. High free opening rates of ladles are required in steel making to improve steel quality. Chromite ladle filler sands are one of the most widely used ladle filler sand. Several operative variables and materials characteristics affect the performance of the sands. Three sets of chromite ladle filler sands were selected and researches were focused on the sintering behaviour and performance of the sands under operative conditions. The effect of particle size distribution on sintering, microstructure, flowability, and permeability were presented. In all cases, the particle size varies from 0. 1 to 1. 5 mm corresponding to free flowing powders. One of the samples has higher permeability factor in comparison with others due to low particle size distribution. The other sample presents very good free opening due to its very good flowability and permeability factor.


Metabolomics | 2017

Detection of adulteration in Iranian saffron samples by 1H NMR spectroscopy and multivariate data analysis techniques

Reza Dowlatabadi; Farshad Farshidfar; Zohreh Zare; Morteza Pirali; Maryam Rabiei; Mohammad Reza Khoshayand; Hans J. Vogel

IntroductionThe high market value of saffron (Crocus sativus L.) has made it an attractive candidate for adulteration. Safflower (Carthamus tinctorius L.) and tartrazine are among the most common herbal and synthetic foreign materials that may be added to pure saffron for the purpose of adulteration. In spite of encouraging advances achieved in the identification of adulteration in saffron samples, the lack of a simple method with sufficient power for discrimination of pure high grade saffron from meticulously adulterated saffron samples persuaded us to perform this study.ObjectivesIn this work, we show that 1H NMR spectroscopy together with chemometric multivariate data analysis methods can be used for the detection of adulteration in saffron.MethodsAuthentic Iranian saffron samples (n = 20) and adulterated samples that were prepared by adding either different quantities of natural plant materials such as safflower, or synthetic dyes such as tartrazine or naphthol yellow to pure saffron (n = 22) composed the training set. This training set was used to build multivariate Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) models. The predictive power of the PLS-DA model was validated by testing the model against an external dataset (n = 13).ResultsPCA and PLS-DA models could both discriminate between the authentic and adulterated samples, and the external validation showed 100% sensitivity and specificity for predicting the authenticity of suspicious samples. Peaks specific to authentic and adulterated samples were also characterized. Proximity of samples with unknown adulteration status to the samples adulterated with known compounds in the PCA provided insight regarding the identity of the adulterant in the suspicious samples. Furthermore, the authentic samples could be distinguished based on their cultivation site.ConclusionThe present study demonstrates that the application of 1H NMR spectroscopy coupled with multivariate data analysis is a suitable approach for detection of adulteration in saffron specimens. Outstanding sensitivity and specificity of the PLS-DA model in discriminating the authentic from adulterated samples in external validation confirmed the high predictive power of the model. The advantage of the present method is its power for detecting a wide spectrum of adulterants, ranging from synthetic dyes to herbal materials, in a single assay.


Metabolites | 2018

A Framework for Development of Useful Metabolomic Biomarkers and Their Effective Knowledge Translation

Calena Marchand; Farshad Farshidfar; Jodi Rattner; Oliver F. Bathe

Despite the significant advantages of metabolomic biomarkers, no diagnostic tests based on metabolomics have been introduced to clinical use. There are many reasons for this, centered around substantial obstacles in developing clinically useful metabolomic biomarkers. Most significant is the need for interdisciplinary teams with expertise in metabolomics, analysis of complex clinical and metabolomic data, and clinical care. Importantly, the clinical need must precede biomarker discovery, and the experimental design for discovery and validation must reflect the purpose of the biomarker. Standard operating procedures for procuring and handling samples must be developed from the beginning, to ensure experimental integrity. Assay design is another challenge, as there is not much precedent informing this. Another obstacle is that it is not yet clear how to protect any intellectual property related to metabolomic biomarkers. Viewing a metabolomic biomarker as a natural phenomenon would inhibit patent protection and potentially stifle commercial interest. However, demonstrating that a metabolomic biomarker is actually a derivative of a natural phenomenon that requires innovation would enhance investment in this field. Finally, effective knowledge translation strategies must be implemented, which will require engagement with end users (clinicians and lab physicians), patient advocate groups, policy makers, and payer organizations. Addressing each of these issues comprises the framework for introducing a metabolomic biomarker to practice.

Collaboration


Dive into the Farshad Farshidfar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aalim M. Weljie

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge