Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Farzad Esni is active.

Publication


Featured researches published by Farzad Esni.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice.

Nils Habbe; Guanglu Shi; Robert A. Meguid; Volker Fendrich; Farzad Esni; Huiping Chen; Georg Feldmann; Doris A. Stoffers; Stephen F. Konieczny; Steven D. Leach; Anirban Maitra

Pancreatic ductal adenocarcinoma (PDAC) is believed to arise through a multistep model comprised of putative precursor lesions known as pancreatic intraepithelial neoplasia (PanIN). Recent genetically engineered mouse models of PDAC demonstrate a comparable morphologic spectrum of murine PanIN (mPanIN) lesions. The histogenesis of PanIN and PDAC in both mice and men remains controversial. The most faithful genetic models activate an oncogenic KrasG12D knockin allele within the pdx1- or ptf1a/p48-expression domain of the entire pancreatic anlage during development, thus obscuring the putative cell(s)-of-origin from which subsequent mPanIN lesions arise. In our study, activation of this knockin KrasG12D allele in the Elastase- and Mist1-expressing mature acinar compartment of adult mice resulted in the spontaneous induction of mPanIN lesions of all histological grades, although invasive carcinomas per se were not seen. We observed no requirement for concomitant chronic exocrine injury in the induction of mPanIN lesions from the mature acinar cell compartment. The acinar cell derivation of the mPanINs was established through lineage tracing in reporter mice, and by microdissection of lesional tissue demonstrating Cre-mediated recombination events. In contrast to the uniformly penetrant mPanIN phenotype observed following developmental activation of KrasG12D in the Pdx1-expressing progenitor cells, the Pdx1-expressing population in the mature pancreas (predominantly islet β cells) appears to be relatively resistant to the effects of oncogenic Kras. We conclude that in the appropriate genetic context, the differentiated acinar cell compartment in adult mice retains its susceptibility for spontaneous transformation into mPanIN lesions, a finding with potential relevance vis-à-vis the origins of PDAC.


Development | 2004

Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas

Farzad Esni; Bidyut Ghosh; Andrew V. Biankin; John W. Lin; Megan A. Albert; Xiaobing Yu; Raymond J. MacDonald; Curt I. Civin; Francisco X. Real; Michael Pack; Douglas W. Ball; Steven D. Leach

Notch signaling regulates cell fate decisions in a variety of adult and embryonic tissues, and represents a characteristic feature of exocrine pancreatic cancer. In developing mouse pancreas, targeted inactivation of Notch pathway components has defined a role for Notch in regulating early endocrine differentiation, but has been less informative with respect to a possible role for Notch in regulating subsequent exocrine differentiation events. Here, we show that activated Notch and Notch target genes actively repress completion of an acinar cell differentiation program in developing mouse and zebrafish pancreas. In developing mouse pancreas, the Notch target gene Hes1 is co-expressed with Ptf1-P48 in exocrine precursor cells, but not in differentiated amylase-positive acinar cells. Using lentiviral delivery systems to induce ectopic Notch pathway activation in explant cultures of E10.5 mouse dorsal pancreatic buds, we found that both Hes1 and Notch1-IC repress acinar cell differentiation, but not Ptf1-P48 expression, in a cell-autonomous manner. Ectopic Notch activation also delays acinar cell differentiation in developing zebrafish pancreas. Further evidence of a role for endogenous Notch in regulating exocrine pancreatic differentiation was provided by examination of zebrafish embryos with homozygous mindbomb mutations, in which Notch signaling is disrupted. mindbomb-deficient embryos display accelerated differentiation of exocrine pancreas relative to wild-type clutchmate controls. A similar phenotype was induced by expression of a dominant-negative Suppressor of Hairless [Su(H)] construct, confirming that Notch actively represses acinar cell differentiation during zebrafish pancreatic development. Using transient transfection assays involving a Ptf1-responsive reporter gene, we further demonstrate that Notch and Notch/Su(H) target genes directly inhibit Ptf1 activity, independent of changes in expression of Ptf1 component proteins. These results define a normal inhibitory role for Notch in the regulation of exocrine pancreatic differentiation.


BMC Developmental Biology | 2007

Wnt/β-catenin signaling is required for development of the exocrine pancreas

James M. Wells; Farzad Esni; Gregory P. Boivin; Bruce J. Aronow; William D. Stuart; Chelsea Combs; Angela M. Sklenka; Steven D. Leach; Andrew M. Lowy

Backgroundβ-catenin is an essential mediator of canonical Wnt signaling and a central component of the cadherin-catenin epithelial adhesion complex. Dysregulation of β-catenin expression has been described in pancreatic neoplasia. Newly published studies have suggested that β-catenin is critical for normal pancreatic development although these reports reached somewhat different conclusions. In addition, the molecular mechanisms by which loss of β-catenin affects pancreas development are not well understood. The goals of this study then were; 1] to further investigate the role of β-catenin in pancreatic development using a conditional knockout approach and 2] to identify possible mechanisms by which loss of β-catenin disrupts pancreatic development. A Pdx1-cre mouse line was used to delete a floxed β-catenin allele specifically in the developing pancreas, and embryonic pancreata were studied by immunohistochemistry and microarray analysis.ResultsPdx1-cre floxed β-catenin animals were viable but demonstrated small body size and shortened median survival. The pancreata from knockout mice were hypoplastic and histologically demonstrated a striking paucity of exocrine pancreas, acinar to duct metaplasia, but generally intact pancreatic islets containing all lineages of endocrine cells. In animals with extensive acinar hypoplasia, putative hepatocyte transdifferention was occasionally observed. Obvious and uniform pancreatic hypoplasia was observed by embryonic day E16.5. Transcriptional profiling of Pdx1-cre floxed β-catenin embryonic pancreata at E14.5, before there was a morphological phenotype, revealed significant decreases in the β-catenin target gene N-myc, and the basic HLH transcription factor PTF1, and an increase of several pancreatic zymogens compared to control animals. By E16.5, there was a dramatic loss of exocrine markers and an increase in Hoxb4, which is normally expressed anterior to the pancreas.ConclusionWe conclude that β-catenin expression is required for development of the exocrine pancreas, but is not required for development of the endocrine compartment. In contrast, β-catenin/Wnt signaling appears to be critical for proliferation of PTF1+ nascent acinar cells and may also function, in part, to maintain an undifferentiated state in exocrine/acinar cell precursors. Finally, β-catenin may be required to maintain positional identity of the pancreatic endoderm along the anterior-posterior axis. This data is consistent with the findings of frequent β-catenin mutations in carcinomas of acinar cell lineage seen in humans.


Gastroenterology | 2008

Hedgehog Signaling Is Required for Effective Regeneration of Exocrine Pancreas

Volker Fendrich; Farzad Esni; Maria Veronica R. Garay; Georg Feldmann; Nils Habbe; Jan Jensen; Yuval Dor; Doris A. Stoffers; Steven D. Leach; Anirban Maitra

Although both endocrine and the exocrine pancreas display a significant capacity for tissue regeneration and renewal, the existence of progenitor cells in the adult pancreas remains uncertain. Using a model of cerulein-mediated injury and repair, we demonstrate that mature exocrine cells, defined by expression of an Elastase1 promoter, actively contribute to regenerating pancreatic epithelium through formation of metaplastic ductal intermediates. Acinar cell regeneration is associated with activation of Hedgehog (Hh) signaling, as assessed by up-regulated expression of multiple pathway components, as well as activation of a Ptch-lacZ reporter allele. Using both pharmacologic and genetic techniques, we also show that the ability of mature exocrine cells to accomplish pancreatic regeneration is impaired by blockade of Hh signaling. Specifically, attenuated regeneration in the absence of an intact Hh pathway is characterized by persistence of metaplastic epithelium expressing markers of pancreatic progenitor cells, suggesting an inhibition of redifferentiation into mature exocrine cells. Given the known role of Hh signaling in exocrine pancreatic cancer, these findings may provide a mechanistic link between injury-induced activation of pancreatic progenitors and subsequent pancreatic neoplasia.


Mechanisms of Development | 2004

Origin of exocrine pancreatic cells from nestin-positive precursors in developing mouse pancreas

Farzad Esni; Doris A. Stoffers; Toshiyuki Takeuchi; Steven D. Leach

During pancreatic development, endocrine and exocrine cell types arise from common precursors in foregut endoderm. However, little information is available regarding regulation of pancreatic epithelial differentiation in specific precursor populations. We show that undifferentiated epithelial precursors in E10.5 mouse pancreas express nestin, an intermediate filament also expressed in neural stem cells. Within developing pancreatic epithelium, nestin is co-expressed with pdx1 and p48, but not ngn3. Epithelial nestin expression is extinguished upon differentiation of endocrine and exocrine cell types, and no nestin-positive epithelial cells are observed by E15.5. In E10.5 dorsal bud explants, activation of EGF signaling results in maintenance of undifferentiated nestin-positive precursors at the expense of differentiated acinar cells, suggesting a precursor/progeny relationship between these cell types. This relationship was confirmed by rigorous lineage tracing studies using nestin regulatory elements to drive Cre-mediated labeling of nestin-positive precursor cells and their progeny. These experiments demonstrate that a nestin promoter/enhancer element containing the second intron of the mouse nestin locus is active in undifferentiated E10.5 pancreatic epithelial cells, and that these nestin-positive precursors contribute to the generation of differentiated acinar cells. As in neural tissue, nestin-positive cells act as epithelial progenitors during pancreatic development, and may be regulated by EGF receptor activity.


Gastroenterology | 2011

Duct Cells Contribute to Regeneration of Endocrine and Acinar Cells Following Pancreatic Damage in Adult Mice

Angela Criscimanna; Julie A. Speicher; Golbahar Houshmand; Chiyo Shiota; Krishna Prasadan; Baoan Ji; Craig D. Logsdon; George K. Gittes; Farzad Esni

BACKGROUND & AIMS There have been conflicting results on a cell of origin in pancreatic regeneration. These discrepancies predominantly stem from lack of specific markers for the pancreatic precursors/stem cells, as well as differences in the targeted cells and severity of tissue injury in the experimental models so far proposed. We attempted to create a model that used diphtheria toxin receptor (DTR) to ablate specific cell populations, control the extent of injury, and avoid induction of the inflammatory response. METHODS To target specific types of pancreatic cells, we crossed R26DTR or R26DTR/lacZ mice with transgenic mice that express the Cre recombinase in the pancreas, under control of the Pdx1 (global pancreatic) or elastase (acinar-specific) promoters. RESULTS Exposure of PdxCre;R26DTR mice to diphtheria toxin resulted in extensive ablation of acinar and endocrine tissues but not ductal cells. Surviving cells within the ductal compartment contributed to regeneration of endocrine and acinar cells via recapitulation of the embryonic pancreatic developmental program. However, following selective ablation of acinar tissue in ElaCreERT2;R26DTR mice, regeneration likely occurred by reprogramming of ductal cells to acinar lineage. CONCLUSIONS In the pancreas of adult mice, epithelial cells within the ductal compartment contribute to regeneration of endocrine and acinar cells. The severity of injury determines the regenerative mechanisms and cell types that contribute to this process.


Development | 2005

Vascular function and sphingosine-1-phosphate regulate development of the dorsal pancreatic mesenchyme

Josefina Edsbagge; Jenny K. Johansson; Farzad Esni; Yang Luo; Glenn L. Radice; Henrik Semb

Early growth and differentiation of the pancreatic endoderm is regulated by soluble factors from the pancreatic mesenchyme. Previously, we demonstrated that N-cadherin-deficient mice lack a dorsal pancreas, due to a critical role of N-cadherin in dorsal pancreatic mesenchymal cell survival. Here, we show that restoring cardiac and circulatory function in N-cadherin null mice by cardiac-specific expression of N-cadherin, rescues formation of the dorsal pancreas, indicating that the phenotype is secondary to defects related to cardiac/vascular function. Based on this observation, we demonstrate that soluble factors present in plasma, such as sphingosine-1-phosphate, rescue formation of the dorsal pancreas in N-cadherin-deficient mice. We also show that sphingosine-1-phosphate indirectly promotes budding of the pancreatic endoderm by stimulating pancreatic mesenchymal cell proliferation. Finally, we identify sphingosine-1-phosphate receptors within the mesenchyme and show that pertussis toxin blocks the sphingosine-1-phosphate-induced actions, suggesting the involvement of G-protein-coupled sphingosine-1-phosphate receptors. Thus, we propose a new model where blood vessel-derived sphingosine-1-phosphate stimulates growth and budding of the dorsal pancreatic endoderm by induction of mesenchymal cell proliferation.


Endocrine-related Cancer | 2007

Snail and Sonic Hedgehog activation in neuroendocrine tumors of the ileum

Volker Fendrich; Jens Waldmann; Farzad Esni; Annette Ramaswamy; Michael Mullendore; Malte Buchholz; Anirban Maitra; Georg Feldmann

The transcription factor Snail represses E-cadherin and induces epithelial-mesenchymal transition, a process also exploited by invasive cancer cells. Aberrant Hedgehog (Hh) signaling was recently observed in a variety of epithelial cancers and it has been shown that the Hh target gene Gli1 induces expression of Snail. In this study, we examined whether Snail and Sonic Hedgehog (SHH) are expressed in neuroendocrine tumors (NETs) of the ileum. Using immunohistochemistry, we found expression of Snail in 22 out of 37 (59%) of evaluated NET samples, but not in adjacent normal tissues. Snail expression was mostly restricted to the invasive front of the tumors. Six of seven liver metastases analyzed were positive for Snail. Intratumoral expression of SHH was detected in 27 out of 37 (73%) tumors. As opposed to Snail, cells expressing SHH were found to be distributed more randomly throughout the tumors. Out of 30 primary NETs, 16 (53%) showed both Snail and SHH expression. Furthermore, we found downregulation of E-cadherin in Snail-expressing cells by immunofluorescence. Real-time RT-PCR revealed conservation of the Hh target genes Gli1, Gli2, and Ptch in the pancreatic carcinoid cell line BON-1, which were downregulated upon Hh inhibition with cyclopamine. Moreover, Hh inhibition attenuated in vitro cell growth in a dose-dependent manner. In conclusion, we describe for the first time that Snail and SHH are overexpressed in a large subset of NETs of the ileum. Aberrant activation of these pathways might be involved in invasion and metastatic spread in NETs.


Developmental Biology | 2011

Embryonic mouse blood flow and oxygen correlate with early pancreatic differentiation

Sohail R. Shah; Farzad Esni; Adam Jakub; Jose Paredes; Nikesh Lath; Marcus M. Malek; Douglas A. Potoka; Krishna Prasadan; Pier G. Mastroberardino; Chiyo Shiota; Ping Guo; Kelly A. Miller; David J. Hackam; R. Cartland Burns; Sidhartha Tulachan; George K. Gittes

The mammalian embryo represents a fundamental paradox in biology. Its location within the uterus, especially early during development when embryonic cardiovascular development and placental blood flow are not well-established, leads to an obligate hypoxic environment. Despite this hypoxia, the embryonic cells are able to undergo remarkable growth, morphogenesis, and differentiation. Recent evidence suggests that embryonic organ differentiation, including pancreatic β-cells, is tightly regulated by oxygen levels. Since a major determinant of oxygen tension in mammalian embryos after implantation is embryonic blood flow, here we used a novel survivable in utero intracardiac injection technique to deliver a vascular tracer to living mouse embryos. Once injected, the embryonic heart could be visualized to continue contracting normally, thereby distributing the tracer specifically only to those regions where embryonic blood was flowing. We found that the embryonic pancreas early in development shows a remarkable paucity of blood flow and that the presence of blood flow correlates with the differentiation state of the developing pancreatic epithelial cells in the region of the blood flow.


Endocrinology | 2016

Intraislet Pancreatic Ducts Can Give Rise to Insulin-Positive Cells.

Yousef El-Gohary; John Wiersch; Sidhartha S. Tulachan; Xiangwei Xiao; Ping Guo; Christopher Rymer; Shane Fischbach; Krishna Prasadan; Chiyo Shiota; Iljana Gaffar; Zewen Song; Csaba Galambos; Farzad Esni; George K. Gittes

A key question in diabetes research is whether new β-cells can be derived from endogenous, nonendocrine cells. The potential for pancreatic ductal cells to convert into β-cells is a highly debated issue. To date, it remains unclear what anatomical process would result in duct-derived cells coming to exist within preexisting islets. We used a whole-mount technique to directly visualize the pancreatic ductal network in young wild-type mice, young humans, and wild-type and transgenic mice after partial pancreatectomy. Pancreatic ductal networks, originating from the main ductal tree, were found to reside deep within islets in young mice and humans but not in mature mice or humans. These networks were also not present in normal adult mice after partial pancreatectomy, but TGF-β receptor mutant mice demonstrated formation of these intraislet duct structures after partial pancreatectomy. Genetic and viral lineage tracings were used to determine whether endocrine cells were derived from pancreatic ducts. Lineage tracing confirmed that pancreatic ductal cells can typically convert into new β-cells in normal young developing mice as well as in adult TGF-β signaling mutant mice after partial pancreatectomy. Here the direct visual evidence of ducts growing into islets, along with lineage tracing, not only represents strong evidence for duct cells giving rise to β-cells in the postnatal pancreas but also importantly implicates TGF-β signaling in this process.

Collaboration


Dive into the Farzad Esni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven D. Leach

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ping Guo

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Chiyo Shiota

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiangwei Xiao

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Anirban Maitra

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge