Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fatemah Habib is active.

Publication


Featured researches published by Fatemah Habib.


Journal of the American Chemical Society | 2011

Single-Molecule Magnet Behavior for an Antiferromagnetically Superexchange-Coupled Dinuclear Dysprosium(III) Complex

Jérôme Long; Fatemah Habib; Po-Heng Lin; Ilia Korobkov; Gary D. Enright; Liviu Ungur; Wolfgang Wernsdorfer; Liviu F. Chibotaru; Muralee Murugesu

A family of five dinuclear lanthanide complexes has been synthesized with general formula [Ln(III)(2)(valdien)(2)(NO(3))(2)] where (H(2)valdien = N1,N3-bis(3-methoxysalicylidene)diethylenetriamine) and Ln(III) = Eu(III)1, Gd(III)2, Tb(III)3, Dy(III)4, and Ho(III)5. The magnetic investigations reveal that 4 exhibits single-molecule magnet (SMM) behavior with an anisotropic barrier U(eff) = 76 K. The step-like features in the hysteresis loops observed for 4 reveal an antiferromagnetic exchange coupling between the two dysprosium ions. Ab initio calculations confirm the weak antiferromagnetic interaction with an exchange constant J(Dy-Dy) = -0.21 cm(-1). The observed steps in the hysteresis loops correspond to a weakly coupled system similar to exchange-biased SMMs. The Dy(2) complex is an ideal candidate for the elucidation of slow relaxation of the magnetization mechanism seen in lanthanide systems.


Chemical Society Reviews | 2013

Lessons learned from dinuclear lanthanide nano-magnets

Fatemah Habib; Muralee Murugesu

The quest for higher density information storage has led to the investigation of Single-Molecule Magnets (SMMs) as potential molecules to be applied in materials such as hard discs. In order for this to occur, one must first design metal complexes which can retain magnetic information at temperatures where these applications become possible. This can only be achieved through answering and understanding fundamental questions regarding the observed physical properties of SMMs. While mononuclear lanthanide complexes have shown promise in obtaining high energy barriers for the reversal of the magnetisation they are limited to Single-Ion Magnet behaviour intrinsic to one metal centre with a limited number of unpaired electrons. As a way of increasing the effective anisotropic barrier, systems with higher nuclearity have been sought to increase the spin ground state of the molecule. Dinuclear complexes are presented as key compounds in studying and understanding the nature of magnetic interactions between metal ions. This tutorial review will span a number of dinuclear 4f complexes which have been critical in our understanding of the way in which lanthanide centres in a complex interact magnetically. It will examine key bridging moieties from the more common oxygen-based groups to newly discovered radical-based bridges and draw conclusions regarding the most effective superexchange pathways allowing the most efficient intracomplex interactions.


Journal of the American Chemical Society | 2011

The use of magnetic dilution to elucidate the slow magnetic relaxation effects of a Dy2 single-molecule magnet.

Fatemah Habib; Po-Heng Lin; Jérôme Long; Ilia Korobkov; Wolfgang Wernsdorfer; Muralee Murugesu

The magnetic dilution method was employed in order to elucidate the origin of the slow relaxation of the magnetization in a Dy(2) single-molecule magnet (SMM). The doping effect was studied using SQUID and micro-SQUID measurements on a Dy(2) SMM diluted in a diamagnetic Y(2) matrix. The quantum tunneling of the magnetization that can occur was suppressed by applying optimum dc fields. The dominant single-ion relaxation was found to be entangled with the neighboring Dy(III) ion relaxation within the molecule, greatly influencing the quantum tunneling of the magnetization in this complex.


Journal of the American Chemical Society | 2013

Significant Enhancement of Energy Barriers in Dinuclear Dysprosium Single-Molecule Magnets Through Electron-Withdrawing Effects

Fatemah Habib; Gabriel Brunet; Veacheslav Vieru; Ilia Korobkov; Liviu F. Chibotaru; Muralee Murugesu

The effect of electron-withdrawing ligands on the energy barriers of Single-Molecule Magnets (SMMs) is investigated. By introducing highly electron-withdrawing atoms on targeted ligands, the energy barrier was significantly enhanced. The structural and magnetic properties of five novel SMMs based on a dinuclear {Dy2} phenoxo-bridged motif are explored and compared with a previously studied {Dy2} SMM (1). All complexes share the formula [Dy2(valdien)2(L)2]·solvent, where H2valdien = N1,N3-bis(3-methoxysalicylidene) diethylenetriamine, the terminal ligand L = NO3(-) (1), CH3COO(-) (2), ClCH2COO(-) (3), Cl2CHCOO(-) (4), CH3COCHCOCH3(-) (5), CF3COCHCOCF3(-) (6), and solvent = 0.5 MeOH (4), 2 CH2Cl2 (5). Systematic increase of the barrier was observed for all complexes with the most drastic increase seen in 6 when the acac ligand of 5 was fluorinated resulting in a 7-fold enhancement of the anisotropic barrier. Ab initio calculations reveal more axial g tensors as well as higher energy first excited Kramers doublets in 4 and 6 leading to higher energy barriers for those complexes.


Angewandte Chemie | 2013

Influence of the Ligand Field on Slow Magnetization Relaxation versus Spin Crossover in Mononuclear Cobalt Complexes

Fatemah Habib; Oana R. Luca; Veacheslav Vieru; Muhandis Shiddiq; Ilia Korobkov; Serge I. Gorelsky; Michael K. Takase; Liviu F. Chibotaru; Stephen Hill; Robert H. Crabtree; Muralee Murugesu

The electronic and magnetic properties of the complexes [Co(terpy)Cl2 ] (1), [Co(terpy)(NCS)2 ] (2), and [Co(terpy)2 ](NCS)2 (3) were investigated. The coordination environment around Co(II) in 1 and 2 leads to a high-spin complex at low temperature and single-molecule magnet properties with multiple relaxation pathways. Changing the ligand field and geometry with an additional terpy ligand leads to spin-crossover behavior in 3 with a gradual transition from high spin to low spin.


Chemical Science | 2012

Supramolecular architectures for controlling slow magnetic relaxation in field-induced single-molecule magnets

Fatemah Habib; Jérôme Long; Po-Heng Lin; Ilia Korobkov; Liviu Ungur; Wolfgang Wernsdorfer; Liviu F. Chibotaru; Muralee Murugesu

In order for molecular magnetic materials to become functional, they must retain their magnetization at reasonable temperatures implying high energy barriers for spin reversal. The field of single-molecule magnets (SMMs) has recently experienced an explosion of research targeting these high anisotropic barriers. Achieving such feats has involved increasing the spin of a complex and/or increasing the inherent magnetic anisotropy. Exerting control over the total spin of a complex has been possible contrary to controlling the global anisotropy. Herein, we report the experimental and theoretical study of local anisotropy alignment on DyIII metal centers and their orientation relative to other centers in rare, dinuclear quadruply-stranded helicate/mesocate complexes. A detailed study of these supramolecular architectures has advanced our knowledge of the origins of magnetic relaxation in SMMs which was shown to arise from minute changes in bond distances around the metal centers leading to changes in the local anisotropy and, in turn, the effective energy barriers.


Inorganic Chemistry | 2012

Lanthanide complexes of tritopic bis(hydrazone) ligands: single-molecule magnet behavior in a linear Dy(III)3 complex.

Muhammad U. Anwar; Santokh S. Tandon; Louise N. Dawe; Fatemah Habib; Muralee Murugesu; Laurence K. Thompson

Tritopic pyridinebis(hydrazone)-based ligands typically produce square M(9) [3 × 3] grid complexes with first-row transition-metal ions (e.g., M = Mn, Fe, Co, Cu, Zn), but with larger lanthanide ions, such coordination motifs are not produced, and instead linear trinuclear complexes appear to be a preferred option. The reaction of 2pomp [derived from pyridine-2,6-bis(hydrazone) and 2-acetylpyridine] with La(III), Gd(III), and Dy(III) salts produces helical linear trinuclear [Ln(3)(2pomp)(2)]-based complexes, where each metal ion occupies one of the three tridentate ligand pockets. Two ligands encompass the three metal ions, and internal connections between metal ions occur through μ-O(hydrazone) bridges. Coligands include benzoate, nitrate, and N,N-dimethylformamide. The linear Dy(III)(3) complex exhibits single-molecule magnet behavior, demonstrated through alternating-current susceptibility measurements. Slow thermal magnetic relaxation was detected in an external field of 1800 Oe, where quantum-tunneling effects were suppressed (U(eff) = 14 K).


Inorganic Chemistry | 2015

Slow Magnetic Relaxation Observed in Dysprosium Compounds Containing Unsupported Near-Linear Hydroxo- and Fluoro-Bridges

Gabriel Brunet; Fatemah Habib; Ilia Korobkov; Muralee Murugesu

The encapsulating N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2valdien) ligand was employed to isolate two novel Dy(III) compounds which contain rare bridging pathways for lanthanide systems. Compound 1, [Na2Dy(III)2(valdien)2(μ-OH)(dbm)2(H2O)2][Na2Dy(III)2(valdien)2(μ-OH)(NO3)2(dbm)2], where dbm(-) is dibenzoylmethanido, and compound 2, [Na3Dy(III)2(valdien)2(μ-F)(μ3-F)2(Cl)2(MeOH)2]n·0.5(MeOH)·(H2O), both exhibit linear lone hydroxo- and fluoro-bridges, respectively, between the metal centers. The unit cell of 1 comprises two discrete dinuclear molecules, which differ slightly, forming a cation-anion pair, while 2 forms a coordination polymer. The magnetic investigations indicate that both compounds display ferromagnetic coupling between the Dy(III) ions. Magnetic susceptibility measurements in the temperature range 1.8-300 K reveal that the Dy(III) ions in 1 are weakly coupled, resulting in a mononuclear single-molecule magnet-like behavior under an applied field. In the case of 2, the stronger coupling arising from the fluoride-bridge, leads to zero-field single-molecule magnet (SMM) behavior with a non-negligible anisotropy barrier (Ueff) of 42 K.


Inorganic Chemistry | 2013

High-temperature spin crossover behavior in a nitrogen-rich Fe(III)-based system.

Cyril Cook; Fatemah Habib; Tomoko Aharen; Rodolphe Clérac; Anguang Hu; Muralee Murugesu

A nitrogen-rich ligand bis(1H-tetrazol-5-yl)amine (H(3)bta) was employed to isolate a new Fe(III) complex, Na(2)NH(4)[Fe(III)(Hbta)(3)]·3DMF·2H(2)O (1). Single crystal X-ray diffraction revealed that complex 1 consists of Fe(III) ions in an octahedral environment where each metal ion is coordinated by three Hbta(2-) ligands forming the [Fe(III)(Hbta)(3)](3-) core. Each unit is linked to two one-dimensional (1-D) Na(+)/solvent chains creating a two-dimensional (2-D) network. In addition, the presence of multiple hydrogen bonds in all directions between ammonium cation and ligands of different [Fe(III)(Hbta)(3)](3-) units generates a three-dimensional (3-D) network. Magnetic measurements confirmed that the Fe(III) center undergoes a Spin Crossover (SCO) at high temperature (T(1/2) = 460(10) K).


Dalton Transactions | 2016

Terminal solvent effects on the anisotropy barriers of Dy2 systems

Y. Jiang; Gabriel Brunet; Rebecca J. Holmberg; Fatemah Habib; Ilya Korobkov; Muralee Murugesu

A family of three dinuclear dysprosium complexes have been successfully synthesized and studied in terms of their magnetic properties. Complexes 1 and 2 share the formula [Dy2(ovph)2Cl2(solvent)2], where H2ovph = pyridine-2-carboxylic acid [(2-hydroxy-3-methoxyphenyl)methylene] hydrazide, and solvent = DMF (1), i-PrOH (2), while complex 3, [Dy2(ovph)2Cl2(H2O)3(EtOH)], exhibits differences in terms of the identity and number of coordinated solvent molecules. Thus, we investigate the impact of terminally bonded solvent molecules on the slow relaxation dynamics of {Dy2} SMMs, a parameter which can sometimes be overlooked in the quest to attain higher energy barriers. Notably, the exchange of DMF for i-PrOH, both of which coordinate through a single oxygen atom, results in a near 2-fold increase in Ueff, from 58 to 98 K, for 1 and 2, respectively.

Collaboration


Dive into the Fatemah Habib's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liviu F. Chibotaru

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Wernsdorfer

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge