Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fatemeh Momen-Heravi is active.

Publication


Featured researches published by Fatemeh Momen-Heravi.


Biological Chemistry | 2013

Current methods for the isolation of extracellular vesicles

Fatemeh Momen-Heravi; Leonora Balaj; Sara Alian; Pierre-Yves Mantel; Allison E. Halleck; Alexander J. Trachtenberg; Cesar E. Soria; Shanice Oquin; Christina M. Bonebreak; Elif Saracoglu; Johan Skog; Winston Patrick Kuo

Abstract Extracellular vesicles (EVs), including microvesicles and exosomes, are nano- to micron-sized vesicles, which may deliver bioactive cargos that include lipids, growth factors and their receptors, proteases, signaling molecules, as well as mRNA and non-coding RNA, released from the cell of origin, to target cells. EVs are released by all cell types and likely induced by mechanisms involved in oncogenic transformation, environmental stimulation, cellular activation, oxidative stress, or death. Ongoing studies investigate the molecular mechanisms and mediators of EVs-based intercellular communication at physiological and oncogenic conditions with the hope of using this information as a possible source for explaining physiological processes in addition to using them as therapeutic targets and disease biomarkers in a variety of diseases. A major limitation in this evolving discipline is the hardship and the lack of standardization for already challenging techniques to isolate EVs. Technical advances have been accomplished in the field of isolation with improving knowledge and emerging novel technologies, including ultracentrifugation, microfluidics, magnetic beads and filtration-based isolation methods. In this review, we will discuss the latest advances in methods of isolation methods and production of clinical grade EVs as well as their advantages and disadvantages, and the justification for their support and the challenges that they encounter.


PLOS Pathogens | 2014

Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90.

Terence N. Bukong; Fatemeh Momen-Heravi; Karen Kodys; Shashi Bala; Gyongyi Szabo

Antibodies targeting receptor-mediated entry of HCV into hepatocytes confer limited therapeutic benefits. Evidence suggests that exosomes can transfer genetic materials between cells; however, their role in HCV infection remains obscure. Here, we show that exosomes isolated from sera of chronic HCV infected patients or supernatants of J6/JFH1-HCV-infected Huh7.5 cells contained HCV RNA. These exosomes could mediate viral receptor-independent transmission of HCV to hepatocytes. Negative sense HCV RNA, indicative of replication competent viral RNA, was present in exosomes of all HCV infected treatment non-responders and some treatment-naïve individuals. Remarkably, HCV RNA was associated with Ago2, HSP90 and miR-122 in exosomes isolated from HCV-infected individuals or HCV-infected Huh7.5 cell supernatants. Exosome-loading with a miR-122 inhibitor, or inhibition of HSP90, vacuolar H+-ATPases, and proton pumps, significantly suppressed exosome-mediated HCV transmission to naïve cells. Our findings provide mechanistic evidence for HCV transmission by blood-derived exosomes and highlight potential therapeutic strategies.


Frontiers in Physiology | 2012

Impact of Biofluid Viscosity on Size and Sedimentation Efficiency of the Isolated Microvesicles

Fatemeh Momen-Heravi; Leonora Balaj; Sara Alian; Alexander J. Trachtenberg; Fred H. Hochberg; Johan Skog; Winston Patrick Kuo

Microvesicles are nano-sized lipid vesicles released by all cells in vivo and in vitro. They are released physiologically under normal conditions but their rate of release is higher under pathological conditions such as tumors. Once released they end up in the systemic circulation and have been found and characterized in all biofluids such as plasma, serum, cerebrospinal fluid, breast milk, ascites, and urine. Microvesicles represent the status of the donor cell they are released from and they are currently under intense investigation as a potential source for disease biomarkers. Currently, the “gold standard” for isolating microvesicles is ultracentrifugation, although alternative techniques such as affinity purification have been explored. Viscosity is the resistance of a fluid to a deforming force by either shear or tensile stress. The different chemical and molecular compositions of biofluids have an effect on its viscosity and this could affect movements of the particles inside the fluid. In this manuscript we addressed the issue of whether viscosity has an effect on sedimentation efficiency of microvesicles using ultracentrifugation. We used different biofluids and spiked them with polystyrene beads and assessed their recovery using the Nanoparticle Tracking Analysis. We demonstrate that MVs recovery inversely correlates with viscosity and as a result, sample dilutions should be considered prior to ultracentrifugation when processing any biofluids.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages.

Fatemeh Momen-Heravi; Shashi Bala; Terence N. Bukong; Gyongyi Szabo

Exosomes, membranous nanovesicles, naturally carry bio-macromolecules and play pivotal roles in both physiological intercellular crosstalk and disease pathogenesis. Here, we showed that B cell-derived exosomes can function as vehicles to deliver exogenous miRNA-155 mimic or inhibitor into hepatocytes or macrophages, respectively. Stimulation of B cells significantly increased exosome production. Unlike in parental cells, baseline level of miRNA-155 was very low in exosomes derived from stimulated B cells. Exosomes loaded with a miRNA-155 mimic significantly increased miRNA-155 levels in primary mouse hepatocytes and the liver of miRNA-155 knockout mice. Treatment of RAW macrophages with miRNA-155 inhibitor loaded exosomes resulted in statistically significant reduction in LPS-induced TNFα production and partially prevented LPS-induced decrease in SOCS1 mRNA levels. Furthermore, exosome-mediated miRNA-155 inhibitor delivery resulted in functionally more efficient inhibition and less cellular toxicity compared to conventional transfection methods. Similar approaches could be useful in modification of target biomolecules in vitro and in vivo. From the clinical editor: In this study, exosome-based delivery of miRNA-155 mimicker or inhibitor was found to have significant biological response in hepatocytes and macrophages. Exosome-based approaches may be useful in the modification of other target biomolecules.


Scientific Reports | 2015

Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS

Fatemeh Momen-Heravi; Shashi Bala; Karen Kodys; Gyongyi Szabo

Hepatocyte damage and inflammation in monocytes/macrophages are central to the pathogenesis of alcoholic hepatitis (AH). MicroRNAs (miRNAs) regulate all of these processes. MiRNA-122 is abundantly expressed in hepatocytes while monocytes/macrophages have low levels. The role of exosomes in AH and possible cross talk between hepatocyte-derived exosomes and immune cells is not explored yet. Here, we show that the number of exosomes significantly increases in the sera of healthy individuals after alcohol binge drinking and in mice after binge or chronic alcohol consumption. Exosomes isolated from sera after alcohol consumption or from in vitro ethanol-treated hepatocytes contained miRNA-122. Exosomes derived from ethanol-treated Huh7.5 cells were taken up by the recipients THP1 monocytes and horizontally transferred a mature form of liver-specific miRNA-122. In vivo, liver mononuclear cells and Kupffer cells from alcohol-fed mice had increased miRNA-122 levels. In monocytes, miRNA-122 transferred via exosomes inhibited the HO-1 pathway and sensitized to LPS stimulation and increased levels of pro-inflammatory cytokines. Finally, inflammatory effects of exosomes from ethanol-treated hepatocytes were prevented by using RNA interference via exosome-mediated delivery of a miRNA-122 inhibitor. These results demonstrate that first, exosomes mediate communication between hepatocytes and monocytes/macrophages and second, hepatocyte-derived miRNA-122 can reprogram monocytes inducing sensitization to LPS.


Frontiers in Physiology | 2012

Alternative methods for characterization of extracellular vesicles.

Fatemeh Momen-Heravi; Leonora Balaj; Sara Alian; John Tigges; Vasilis Toxavidis; Maria Ericsson; Robert J. Distel; Alexander R. Ivanov; Johan Skog; Winston Patrick Kuo

Extracellular vesicles (ECVs) are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell–cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins, and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize ECVs. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some ECVs-specific evidence. Characterization of ECVs has also recently seen many advances with the use of Nanoparticle Tracking Analysis, flow cytometry, cryo-electron microscopy instruments, and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face.


Journal of Translational Medicine | 2015

Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis

Fatemeh Momen-Heravi; Banishree Saha; Karen Kodys; Donna Catalano; Abhishek Satishchandran; Gyongyi Szabo

BackgroundIt has been well documented that alcohol and its metabolites induce injury and inflammation in the liver. However, there is no potential biomarker to monitor the extent of liver injury in alcoholic hepatitis patients. MicroRNAs (miRNAs) are a class of non-coding RNAs that are involved in various physiologic and pathologic processes. In the circulation, a great proportion of miRNAs is associated with extracellular vesicles (EVs)/exosomes. Here, we hypothesized that the exosome-associated miRNAs can be used as potential biomarkers in alcoholic hepatitis (AH).MethodsExosomes were isolated from sera of alcohol-fed mice or pair-fed mice, and plasma of alcoholic hepatitis patients or healthy controls by ExoQuick. The exosomes were characterized by transmission electron microscopy and Western blot and enumerated with a Nanoparticle Tracking Analysis system. Firefly™ microRNA Assay was performed on miRNA extracted from mice sera. TaqMan microRNA assay was used to identify differentially expressed miRNAs in plasma of cohort of patients with AH versus controls followed by construction of receiver operating characteristic (ROC) curves to determine the sensitivity and specificity of the candidates.ResultsThe total number of circulating EVs was significantly increased in mice after alcohol feeding. Those EVs mainly consisted of exosomes, the smaller size vesicle subpopulation of EVs. By performing microarray screening on exosomes, we found nine inflammatory miRNAs which were deregulated in sera of chronic alcohol-fed mice compared to controls including upregulated miRNAs: miRNA-192, miRNA-122, miRNA-30a, miRNA-744, miRNA-1246, miRNA 30b and miRNA-130a. The ROC analyses indicated excellent diagnostic value of miRNA-192, miRNA-122, and miRNA-30a to identify alcohol-induced liver injury. We further validated findings from our animal model in human samples. Consistent with the animal model, total number of EVs, mostly exosomes, was significantly increased in human subjects with AH. Both miRNA-192 and miRNA-30a were significantly increased in the circulation of subjects with AH. miRNA-192 showed promising value for the diagnosis of AH.ConclusionElevated level of EVs/exosomes and exosome-associated miRNA signature could serve as potential diagnostic markers for AH. In addition to the biomarker diagnostic capabilities, these findings may facilitate development of novel strategies for diagnostics, monitoring, and therapeutics of AH.


Expert Review of Molecular Diagnostics | 2014

Emerging technologies in extracellular vesicle-based molecular diagnostics

Shidong Jia; Davide Zocco; Michael L. Samuels; Michael F. Chou; Roger Chammas; Johan Skog; Natasa Zarovni; Fatemeh Momen-Heravi; Winston Patrick Kuo

Extracellular vesicles (EVs), including exosomes and microvesicles, have been shown to carry a variety of biomacromolecules including mRNA, microRNA and other non-coding RNAs. Within the past 5 years, EVs have emerged as a promising minimally invasive novel source of material for molecular diagnostics. Although EVs can be easily identified and collected from biological fluids, further research and proper validation is needed in order for them to be useful in the clinical setting. In addition, innovative and more efficient means of nucleic acid profiling are needed to facilitate investigations into the cellular and molecular mechanisms of EV function and to establish their potential as useful clinical biomarkers and therapeutic tools. In this article, we provide an overview of recent technological improvements in both upstream EV isolation and downstream analytical technologies, including digital PCR and next generation sequencing, highlighting future prospects for EV-based molecular diagnostics.


Journal of Dental Research | 2014

Genomewide Study of Salivary MicroRNAs for Detection of Oral Cancer

Fatemeh Momen-Heravi; Alexander J. Trachtenberg; Winston Patrick Kuo; Y.S. Cheng

MicroRNAs (miRNAs) in human saliva have recently demonstrated to be potential biomarkers for diagnosis purposes. However, lack of well-characterized/matched clinical groups and lack of suitable endogenous control (EC) for salivary extracellular miRNA detection and normalization are among the restrictions of applying salivary-based miRNA biomarker discovery. In the present study, we examined the differential expression pattern of miRNAs among 4 groups of subjects—including patients with oral squamous cell carcinoma (OSCC), patients with OSCC in remission (OSCC-R), patients with oral lichen planus, and healthy controls (HCs)—using a genomewide high-throughput miRNA microarray. First, we systematically screened 10 pooling samples and 34 individual samples of different groups to find a proper EC miRNA. We then investigated the genomewide expression patterns of differentially expressed miRNAs in saliva of different groups using NanoString nCounter miRNA expression assay and real-time quantitative polymerase chain reaction, followed by construction of receiver operating characteristic curves to determine the sensitivity and specificity of the assay. We identified miRNA-191 as a suitable EC miRNA with minimal intergroup and intragroup variability, and we used it for normalization. Of more than 700 miRNAs tested, 13 were identified as being significantly deregulated in saliva of OSCC patients compared to HCs: 11 miRNAs were underexpressed (miRNA-136, miRNA-147, miRNA-1250, miRNA-148a, miRNA-632, miRNA-646, miRNA668, miRNA-877, miRNA-503, miRNA-220a, miRNA-323-5p), and 2 miRNAs were overexpressed (miRNA-24, miRNA-27b). MiRNA-136 was underexpressed in both OSCC vs. HCs and OSCC vs. OSCC-R. MiRNA-27b levels were significantly higher in OSCC patients compared to those found in HCs, patients with OSCC-R, and patients with oral lichen planus and served as a characteristic biomarker of OSCC. Receiver operating characteristic curve analyses showed that miRNA-27b could be a valuable biomarker for distinguishing OSCC patients from the other groups. Our novel findings established a reliable EC miRNA for salivary-based diagnostic and indicate that the salivary miRNA profiles are discriminatory in OSCC patients.


Journal of Biological Chemistry | 2016

MicroRNA Cargo of Extracellular Vesicles from Alcohol-exposed Monocytes Signals Naive Monocytes to Differentiate into M2 Macrophages

Banishree Saha; Fatemeh Momen-Heravi; Karen Kodys; Gyongyi Szabo

Membrane-coated extracellular vesicles (EVs) released by cells can serve as vehicles for delivery of biological materials and signals. Recently, we demonstrated that alcohol-treated hepatocytes cross-talk with immune cells via exosomes containing microRNA (miRNAs). Here, we hypothesized that alcohol-exposed monocytes can communicate with naive monocytes via EVs. We observed increased numbers of EVs, mostly exosomes, secreted by primary human monocytes and THP-1 monocytic cells in the presence of alcohol in a concentration- and time-dependent manner. EVs derived from alcohol-treated monocytes stimulated naive monocytes to polarize into M2 macrophages as indicated by increased surface expression of CD68 (macrophage marker), M2 markers (CD206 (mannose receptor) and CD163 (scavenger receptor)), secretion of IL-10, and TGFβ and increased phagocytic activity. miRNA profiling of the EVs derived from alcohol-treated THP-1 monocytes revealed high expression of the M2-polarizing miRNA, miR-27a. Treatment of naive monocytes with control EVs overexpressing miR-27a reproduced the effect of EVs from alcohol-treated monocytes on naive monocytes and induced M2 polarization, suggesting that the effect of alcohol EVs was mediated by miR-27a. We found that miR-27a modulated the process of phagocytosis by targeting CD206 expression on monocytes. Importantly, analysis of circulating EVs from plasma of alcoholic hepatitis patients revealed increased numbers of EVs that contained high levels of miR-27a as compared with healthy controls. Our results demonstrate the following: first, alcohol increases EV production in monocytes; second, alcohol-exposed monocytes communicate with naive monocytes via EVs; and third, miR-27a cargo in monocyte-derived EVs can program naive monocytes to polarize into M2 macrophages.

Collaboration


Dive into the Fatemeh Momen-Heravi's collaboration.

Top Co-Authors

Avatar

Gyongyi Szabo

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shashi Bala

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Kodys

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donna Catalano

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge