Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Faten Gad is active.

Publication


Featured researches published by Faten Gad.


Journal of Experimental Medicine | 2004

Mannose-binding Lectin-deficient Mice Are Susceptible to Infection with Staphylococcus aureus

Lei Shi; Kazue Takahashi; Joseph Dundee; Sarit Shahroor-Karni; Steffen Thiel; Jens C. Jensenius; Faten Gad; Michael R. Hamblin; Kedarnath N. Sastry; R. Alan B. Ezekowitz

Gram-positive organisms like Staphylococcus aureus are a major cause of morbidity and mortality worldwide. Humoral response molecules together with phagocytes play a role in host responses to S. aureus. The mannose-binding lectin (MBL, also known as mannose-binding protein) is an oligomeric serum molecule that recognizes carbohydrates decorating a broad range of infectious agents including S. aureus. Circumstantial evidence in vitro and in vivo suggests that MBL plays a key role in first line host defense. We tested this contention directly in vivo by generating mice that were devoid of all MBL activity. We found that 100% of MBL-null mice died 48 h after exposure to an intravenous inoculation of S. aureus compared with 45% mortality in wild-type mice. Furthermore, we demonstrated that neutrophils and MBL are required to limit intraperitoneal infection with S. aureus. Our study provides direct evidence that MBL plays a key role in restricting the complications associated with S. aureus infection in mice and raises the idea that the MBL gene may act as a disease susceptibility gene against staphylococci infections in humans.


Antimicrobial Agents and Chemotherapy | 2004

Effects of growth phase and extracellular slime on photodynamic inactivation of gram-positive pathogenic bacteria.

Faten Gad; Touqir Zahra; Tayyaba Hasan; Michael R. Hamblin

ABSTRACT The emergence of antibiotic resistance among pathogenic bacteria has led to efforts to find alternative antimicrobial therapeutics to which bacteria will not be easily able to develop resistance. One of these may be the combination of nontoxic dyes (photosensitizers [PS]) and visible light, known as photodynamic therapy, and we have reported its use to treat localized infections in animal models. While it is known that gram-positive species are generally susceptible to photodynamic inactivation (PDI), the factors that govern variation in degrees of killing are unknown. We used isogenic pairs of wild-type and transposon mutants deficient in capsular polysaccharide and slime production generated from Staphylococcus epidermidis and Staphylococcus aureus to examine the effects of extracellular slime on susceptibility to PDI mediated by two cationic PS (a polylysine-chlorine6 conjugate, pL-ce6, and methylene blue [MB]) and an anionic molecule, free ce6, and subsequent exposure to 665-nm light at 0 to 40 J/cm2. Free ce6 gave more killing of mutant strains than wild type, despite the latter taking up more PS. Log-phase cultures were killed more than stationary-phase cultures, and this correlated with increased uptake. The cationic pL-ce6 and MB gave similar uptakes and killing despite a 50-fold difference in incubation concentration. Differences in susceptibility between strains and between growth phases observed with free ce6 largely disappeared with the cationic compounds despite significant differences in uptake. These data suggest that slime production and stationary phase can be obstacles against PDI for gram-positive bacteria but that these obstacles can be overcome by using cationic PS.


Antimicrobial Agents and Chemotherapy | 2006

Protease-Stable Polycationic Photosensitizer Conjugates between Polyethyleneimine and Chlorin(e6) for Broad-Spectrum Antimicrobial Photoinactivation

George P. Tegos; Masahiro Anbe; Changming Yang; Tatiana N. Demidova; Minahil Satti; Pawel Mroz; Sumbul Janjua; Faten Gad; Michael R. Hamblin

ABSTRACT We previously showed that covalent conjugates between poly-l-lysine and chlorin(e6) were efficient photosensitizers (PS) of both gram-positive and gram-negative bacteria. The polycationic molecular constructs increased binding and penetration of the PS into impermeable gram-negative cells. We have now prepared a novel set of second-generation polycationic conjugates between chlorin(e6) and three molecular forms of polyethyleneimine (PEI): a small linear, a small cross-linked, and a large cross-linked molecule. The conjugates were characterized by high-pressure liquid chromatography and tested for their ability to kill a panel of pathogenic microorganisms, the gram-positive Staphylococcus aureus and Streptococcus pyogenes, the gram-negative Escherichia coli and Pseudomonas aeruginosa, and the yeast Candida albicans, after exposure to low levels of red light. The large cross-linked molecule efficiently killed all organisms, while the linear conjugate killed gram-positive bacteria and C. albicans. The small cross-linked conjugate was the least efficient antimicrobial PS and its remarkably low activity could not be explained by reduced photochemical quantum yield or reduced cellular uptake. In contrast to polylysine conjugates, the PEI conjugates were resistant to degradation by proteases such as trypsin that hydrolyze lysine-lysine peptide bonds, The advantage of protease stability combined with the ready availability of PEI suggests these molecules may be superior to polylysine-PS conjugates for photodynamic therapy of localized infections.


Journal of Biomedical Optics | 2006

Photosensitizer delivery to vulnerable atherosclerotic plaque: comparison of macrophage-targeted conjugate versus free chlorine(e6)

Ahmed Tawakol; Ana P. Castano; Florencia Anatelli; Gregory Bashian; Jeremy Stern; Touqir Zahra; Faten Gad; Stephanie Chirico; Atosa Ahmadi; Alan J. Fischman; James E. Muller; Michael R. Hamblin

We have previously shown that a conjugate (MA-ce6) between maleylated serum albumin and the photosensitizer chlorin(e6) (ce6) is targeted in vitro to macrophages via class A scavenger receptors. We now report on the ability of this conjugate to localize in macrophage-rich atherosclerotic plaques in vivo. Both the conjugate and the free photosensitizer ce6 are studied after injection into New Zealand White rabbits that are rendered atherosclerotic by a combination of aortic endothelial injury and cholesterol feeding into normal rabbits. Rabbits are sacrificed at 6 and 24 h after injection and intravascular fluorescence spectroscopy is carried out by fiber-based fluorimetry in intact blood-filled arteries. Surface spectrofluorimetry of numbered excised aortic segments together with injured and normal iliac arteries is carried out, and quantified ce6 content by subsequent extraction and quantitative fluorescence determination of the arterial segments and also of nontarget organs. There is good agreement between the various techniques for quantifying ce6 localization, and high contrast between arteries from atherosclerotic and normal rabbits is obtained. Fluorescence correlates with the highest burden of plaque in the aorta and the injured iliac artery. The highest accumulation in plaques is obtained using MA-ce6 at 24 h. Free ce6 gives better accumulation at 6 h compared to 24 h. The liver, spleen, lung, and gall bladder have the highest uptake in nontarget organs. Macrophage-targeted photosensitizer conjugates may have applications in both detecting and treating inflamed vulnerable plaque.


Biomedical optics | 2003

Specific anti-tumor immune response with photodynamic therapy mediated by benzoporphyrin derivative and chlorin(e6)

Ana P. Castano; Faten Gad; Touqir Zahra; Michael R. Hamblin

The purpose of this study was to investigate the induction of anti-tumor immunity by photodynamic therapy (PDT). We used EMT-6 mammary sarcoma, a moderately immunogenic tumor, with 10(6) cells injected s.c. in thighs of immunocompetent Balb/c mice. Mice were treated 10 days later when tumors were 6-mm diameter. Two PDT regimens were equally effective in curing tumors: 1-mg/kg of liposomal benzoporphyrin derivative (BPD) followed after 15 min by 150 J/cm2 690 nm light or 10-mg/kg chlorin(e6) (ce6) followed after 6 hours by 150 J/cm2 665 nm light. BPD-PDT produced a black eschar 24-48 hours after treatment with no visible tumor, followed by healing of the lesion. By contrast ce6-PDT showed no black eschar, but a slow disappearance of tumor over 5-7 days. When cured mice were rechallenged with 10(6) EMT-6 cells in the opposite thigh, all ce6-PDT cured mice rejected the challenge, but BPD-PDT cured mice grew tumors in a proportion of cases. When mice were cured by amputation of the tumor bearing leg, all mice subsequently grew tumors upon rechallenge. Mice were given two EMT6 tumors (1 in each leg) and the mouse was injected with ce6 or BPD but only one tumor was treated with light. Both tumors (PDT-treated and contralateral) regressed at an equal rate until they became undetectable, but in some mice the untreated tumor recurred. Those mice cured of both tumors rejected a subsequent EMT6 rechallenge. Amputation of the tumor bearing leg did not lead to regression of the contralateral tumor. Mice that rejected an EMT6 rechallenge failed to reject a subsequent cross-challenge with J774 reticulum cell sarcoma (an alternative Balb/c murine tumor). These data show that PDT generates a tumor-specific memory immune response, and in addition an active tumoricidal immune response capable of destroying distant established tumors. We hypothesize that ce6-PDT is more effective than BPD-PDT due to more necrotic rather than apoptotic cell death and/or generation of heat-shock proteins that are known for efficient presentation of tumor antigens via dendritic cells to cytotoxic T-cells. PDT could be used to treat a locally advanced tumor while at the same time destroying distant metastases via an induced immune response.


Biomedical optics | 2003

Macrophage-targeted photodynamic detection of vulnerable atherosclerotic plaque

Michael R. Hamblin; Ahmed Tawakol; Ana P. Castano; Faten Gad; Touqir Zahra; Atosa Ahmadi; Jeremy Stern; Bernhard Ortel; Stephanie Chirico; Azadeh Shirazi; Sakeena Syed; James E. Muller

Rupture of a vulnerable atherosclerotic plaque (VP) leading to coronary thrombosis is the chief cause of sudden cardiac death. VPs are angiographically insignificant lesions, which are excessively inflamed and characterized by dense macrophage infiltration, large necrotic lipid cores, thin fibrous caps, and paucity of smooth muscle cells. We have recently shown that chlorin(e6) conjugated with maleylated albumin can target macrophages with high selectivity via the scavenger receptor. We report the potential of this macrophage-targeted fluorescent probe to localize in VPs in a rabbit model of atherosclerosis, and allow detection and/or diagnosis by fluorescence spectroscopy or imaging. Atherosclerotic lesions were induced in New Zealand White rabbit aortas by balloon injury followed by administration of a high-fat diet. 24-hours after IV injection of the conjugate into atherosclerotic or normal rabbits, the animals were sacrificed, and aortas were removed, dissected and examined for fluorescence localization in plaques by fiber-based spectrofluorimetry and confocal microscopy. Dye uptake within the aortas was also quantified by fluorescence extraction of samples from aorta segments. Biodistribution of the dye was studied in many organs of the rabbits. Surface spectrofluorimetry after conjugate injection was able to distinguish between plaque and adjacent aorta, between atherosclerotic and normal aorta, and balloon-injured and normal iliac arteries with high significance. Discrete areas of high fluorescence (up to 20 times control were detected in the balloon-injured segments, presumably corresponding to macrophage-rich plaques. Confocal microscopy showed red ce6 fluorescence localized in plaques that showed abundant foam cells and macrophages by histology. Extraction data on aortic tissue corroborated the selectivity of the conjugate for plaques. These data support the strategy of employing macrophage-targeted fluorescent dyes to detect VP by intravascular spectrofluorimetry. It may also be possible to use macrophage-targeted PDT to therapeutically modify inflammatory cell-laden VPs leading to plaque stabilization and reduction of sudden cardiovascular death.


Biomedical optics | 2004

Targeted photodynamic therapy of established soft-tissue infections in mice

Faten Gad; Touqir Zahra; Tayyaba Hasan; Michael R. Hamblin

The worldwide rise in antibiotic resistance necessitates the development of novel antimicrobial strategies. Although many workers have used photodynamic therapy (PDT) to kill bacteria in vitro, the use of this approach has seldom been reported in vivo in animal models of infection. We have previously described the first use of PDT to treat excisional wound infections by Gram-negative bacteria in living mice. However these infected wound models used a short time after infection (30 min) before PDT. We now report on the use of PDT to treat an established soft-tissue infection in mice. We used Staphylococcus aureus stably transformed with a Photorhabdus luminescens lux operon (luxABCDE) that was genetically modified to be functional in Gram-positive bacteria. These engineered bacteria emitted bioluminescence allowing the progress of the infection to be monitored in both space and time with a lowlight imaging charged couple device (CCD) camera. One million cells were injected into one or both thigh muscles of mice that had previously been rendered neutropenic by cyclophosphamide administration. Twenty-four hours later the bacteria had multiplied more than one hundred-fold, and poly-L-lysine chlorin(e6) conjugate or free chlorin(e6) was injected into one area of infected muscle and imaged with the CCD camera. Thirty-minutes later red light from a diode laser was delivered as a surface spot or by interstitial fiber into the infection. There was a lightdose dependent loss of bioluminescence (to < 5% of that seen in control infections) not seen in untreated or light alone treated infections, but in some cases the infection recurred. Conjugate alone led to a lesser reduction in bioluminescence. Infections treated with free chlorin(e6) responded less and the infection subsequently increased over the succeeding days, probably due to PDT-mediated tissue damage. PDT-treated infected legs healed better than legs with untreated infections. This data shows that PDT may have applications in drug-resistant soft-tissue infections.


Journal of Photochemistry and Photobiology B-biology | 2005

Monitoring photodynamic therapy of localized infections by bioluminescence imaging of genetically engineered bacteria

Tatiana N. Demidova; Faten Gad; Touqir Zahra; Kevin P. Francis; Michael R. Hamblin


Photochemical and Photobiological Sciences | 2008

Intravascular detection of inflamed atherosclerotic plaques using a fluorescent photosensitizer targeted to the scavenger receptor

Ahmed Tawakol; Ana P. Castano; Faten Gad; Touqir Zahra; Gregory Bashian; Raymond Q. Migrino; Atosa Ahmadi; Jeremy Stern; Florencia Anatelli; Stephanie Chirico; Azadeh Shirazi; Sakeenah Syed; Alan J. Fischman; James E. Muller; Michael R. Hamblin


Archive | 2004

Photodynamic Modulation of Wound Healing and Inhibition of Tissue Degradation

Michael R. Hamblin; Tatiana N. Demidova; Faten Gad; Touqir Zahra; Tayyaba Hasan

Collaboration


Dive into the Faten Gad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge