Faten Ghodhbane-Gtari
Carthage University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Faten Ghodhbane-Gtari.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2011
Imen Nouioui; Faten Ghodhbane-Gtari; Nicholas Beauchemin; Louis S. Tisa; Maher Gtari
To construct an evolutionary hypothesis for the genus Frankia, gyrB (encoding gyrase B), nifH (encoding nitrogenase reductase) and glnII (encoding glutamine synthetase II) gene sequences were considered for 38 strains. The overall clustering pattern among Frankia strains based on the three analyzed sequences varied among themselves and with the previously established 16S rRNA gene phylogeny and they did not reliably reflect clear evolution of the four discerned Frankia clusters (1, 2, 3 and 4). Based on concatenated gyrB, nifH and glnII, robust phylogenetic trees were observed with the three treeing methods (Maximum Likelihood, Parsimony and Neighbor-Joining) and supported by strong bootstrap and posterior probability values (>75%) for overall branching. Cluster 4 (non-infective and/or non-nitrogen-fixing Frankia) was positioned at a deeper branch followed by cluster 3 (Rhamnaceae and Elaeagnaceae infective Frankia), while cluster 2 represents uncultured Frankia microsymbionts of the Coriariaceae, Datiscaceae, Rosaceae and of Ceanothus sp. (Rhamnaceae); Cluster 1 (Betulaceae, Myricaceae and Casuarinaceae infective Frankia) appears to have diverged more recently. The present study demonstrates the utility of phylogenetic analyses based upon concatenated gyrB, nifH and glnII sequences to help resolve previously unresolved or poorly resolved nodes and will aid in describing species among the genus Frankia.
Genome Announcements | 2013
Faten Ghodhbane-Gtari; Nicholas Beauchemin; David Bruce; Patrick Chain; Amy Chen; Karen W. Davenport; Shweta Deshpande; Chris Detter; Teal Furnholm; Lynne Goodwin; Maher Gtari; Cliff Han; James Han; Marcel Huntemann; Natalia Ivanova; Nikos C. Kyrpides; Miriam Land; Victor Markowitz; Kostas Mavrommatis; Matt Nolan; Imen Nouioui; Ioanna Pagani; Amrita Pati; Sam Pitluck; Catarina L. Santos; Arnab Sen; Saubashya Sur; Ernest Szeto; Fernando Tavares; Hazuki Teshima
ABSTRACT We report here the genome sequence of Frankia sp. strain CN3, which was isolated from Coriaria nepalensis. This genome sequence is the first from the fourth lineage of Frankia, strains of which are unable to reinfect actinorhizal plants. At 10 Mb, it represents the largest Frankia genome sequenced to date.
Current Protein & Peptide Science | 2011
Francine Perrine-Walker; Hassen Gherbi; Leandro Imanishi; Valérie Hocher; Faten Ghodhbane-Gtari; Faiza Meriem Benabdoun; Matish Nambiar-Veetil; Sergio Svistoonoff; Laurent Laplaze
Actinorhizal symbioses are mutualistic associations between plants belonging to eight angiosperm families and soil bacteria of the genus Frankia. These interactions lead to the formation of new root organs, actinorhizal nodules, where the bacteria are hosted and fix atmospheric nitrogen thus providing the plant with an almost unlimited source of nitrogen for its nutrition. It involves an elaborate signaling between both partners of the symbiosis. In recent years, our knowledge of this signaling pathway has increased tremendously thanks to a series of technical breakthroughs including the sequencing of three Frankia genomes [1] and the implementation of RNA silencing technology for two actinorhizal species. In this review, we describe all these recent advances, current researches on symbiotic signaling in actinorhizal symbioses and give some potential future research directions.
Scientific Reports | 2015
Maher Gtari; Faten Ghodhbane-Gtari; Imen Nouioui; Amir Ktari; Karima Hezbri; Wajdi Mimouni; Imed Sbissi; Amani Ayari; Takashi Yamanaka; Philippe Normand; Louis S. Tisa; Abdellatif Boudabous
The repeated failures reported in cultivating some microbial lineages are a major challenge in microbial ecology and probably linked, in the case of Frankia microsymbionts to atypical patterns of auxotrophy. Comparative genomics of the so far uncultured cluster-2 Candidatus Frankia datiscae Dg1, with cultivated Frankiae has revealed genome reduction, but no obvious physiological impairments. A direct physiological assay on nodule tissues from Coriaria myrtifolia infected with a closely-related strain permitted the identification of a requirement for alkaline conditions. A high pH growth medium permitted the recovery of a slow-growing actinobacterium. The strain obtained, called BMG5.1, has short hyphae, produced diazovesicles in nitrogen-free media, and fulfilled Koch’s postulates by inducing effective nodules on axenically grown Coriaria spp. and Datisca glomerata. Analysis of the draft genome confirmed its close proximity to the Candidatus Frankia datiscae Dg1 genome with the absence of 38 genes (trehalose synthase, fumarylacetoacetase, etc) in BMG5.1 and the presence of 77 other genes (CRISPR, lanthionine synthase, glutathione synthetase, catalase, Na+/H+ antiporter, etc) not found in Dg1. A multi-gene phylogeny placed the two cluster-2 strains together at the root of the Frankia radiation.
Archives of Microbiology | 2012
Maher Gtari; Faten Ghodhbane-Gtari; Imen Nouioui; Nicholas Beauchemin; Louis S. Tisa
It was assumed for a long time that the ability to catalyze atmospheric nitrogen (diazotrophy) has a narrow distribution among actinobacteria being limited to the genus Frankia. Recently, the number of nitrogen fixation (nifH) genes identified in other non-Frankia actinobacteria has dramatically increased and has opened investigation on the origin and emergence of diazotrophy among actinobacteria. During the last decade, Mycobacterium flavum, Corynebacterium autotrophicum and a fluorescent Arthrobacter sp. have been reported to have nitrogenase activity, but these studies have not been further verified. Additional reports of nitrogen fixation by Agromyces, Microbacterium,Corynebacterium and Micromonospora isolated from root nodules of leguminous and actinorhizal plants have increased. For several actinobacteria, nitrogen fixation was demonstrated by the ability to grow on nitrogen-free medium, acetylene reduction activity, 15N isotope dilution analysis and identification of a nifH gene via PCR amplification. Moreover, the analyses of draft genome sequences of actinobacteria including Slackia exigua, Rothia mucilaginosa and Gordonibacter pamelaeae have also revealed the presence of nifH-like sequences. Whether these nifH sequences are associated with effective nitrogen fixation in these actinobacteria taxa has not yet been demonstrated. These genes may be vertically or horizontally transferred and be silent sequences. These ideas merit further investigation. This minireview presents a phylogenetic comparison of nitrogen fixation gene (nifH) with the aim of elucidating the processes underlying the evolutionary history of this catalytic ability among actinobacteria.
Genome Announcements | 2013
L. G. Wall; Nicholas Beauchemin; Michael N. Cantor; E. Chaia; Amy Chen; John C. Detter; Teal Furnholm; Faten Ghodhbane-Gtari; Lynne Goodwin; Maher Gtari; Cliff Han; James Han; Marcel Huntemann; Susan X. Hua; Natalia Ivanova; Nikos C. Kyrpides; Victor Markowitz; Kostas Mavrommatis; Natalia Mikhailova; H. P. Nordberg; I. Nouioui; Galina Ovchinnikova; Ioanna Pagani; Amrita Pati; Arnab Sen; Saubashya Sur; Ernest Szeto; Subarna Thakur; Chia-Lin Wei; T. Woyke
ABSTRACT Frankia forms a nitrogen-fixing symbiosis with actinorhizal plants. We report a draft genome sequence for Frankia sp. strain BCU110501, a nitrogen-fixing actinobacterium isolated from nodules of Discaria trinevis grown in the Patagonia region of Argentina.
Genome Announcements | 2013
Imen Nouioui; Nicholas Beauchemin; Michael N. Cantor; Amy Chen; J. Chris Detter; Teal Furnholm; Faten Ghodhbane-Gtari; Lynne Goodwin; Maher Gtari; Cliff Han; James Han; Marcel Huntemann; Susan Xinyu Hua; Natalia Ivanova; Nikos C. Kyrpides; Victor Markowitz; Kostas Mavrommatis; Natalia Mikhailova; Henrik P. Nordberg; Galina Ovchinnikova; Ioanna Pagani; Amrita Pati; Arnab Sen; Saubashya Sur; Ernest Szeto; Subarna Thakur; Luis Gabriel Wall; Chia-Lin Wei; Tanja Woyke; Louis S. Tisa
ABSTRACT Members of the actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a draft genome sequence for Frankia sp. strain BMG5.12, a nitrogen-fixing actinobacterium isolated from Tunisian soils with the ability to infect Elaeagnus angustifolia and Myrica gale.
Symbiosis | 2010
Faten Ghodhbane-Gtari; Imene Essoussi; Mayssa Chattaoui; Bessem Chouaia; Atef Jaouani; Daniele Daffonchio; Abdellatif Boudabous; Maher Gtari
Actinobacterial isolates randomly obtained on nitrogen-free BAP medium from surface sterilized root nodules of Alnus glutinosa, Casuarina glauca and Elaeagnus angustifolia sampled from fields were reported. They were assigned on the basis of partial 16S rRNA sequences to Micromonospora, Nocardia and Streptomyces genera. The isolates have been screened for hydrolytic activities, indole acetic acid (IAA) and siderophores production, phosphate solubilization and antagonistic activities. Results suggest putative traits as plant growth promoting bacteria proprieties of the isolates that occur in unique association in root nodules of the three analysed actinorhizal host species.
Genome Announcements | 2014
Sheldon G. Hurst; Rediet Oshone; Faten Ghodhbane-Gtari; Krystalynne Morris; Feseha Abebe-Akele; W. Kelley Thomas; Amir Ktari; Karima Salem; Samira R. Mansour; Maher Gtari; Louis S. Tisa
ABSTRACT Nitrogen-fixing actinobacteria of the genus Frankia are symbionts of woody dicotyledonous plants termed actinorhizal plants. We report here a 5.3-Mbp draft genome sequence for Frankia sp. stain Thr, a nitrogen-fixing actinobacterium isolated from root nodules of Casuarina cunninghamiana collected in Egypt.
Journal of Bacteriology | 2012
Bessem Chouaia; Elena Crotti; Lorenzo Brusetti; Daniele Daffonchio; Imen Essoussi; Imen Nouioui; Imed Sbissi; Faten Ghodhbane-Gtari; Maher Gtari; Benoit Vacherie; Valérie Barbe; Claudine Médigue; Jérôme Gury; Petar Pujic; Philippe Normand
Members of the genus Blastococcus have been isolated from sandstone monuments, as well as from sea, soil, plant, and snow samples. We report here the genome sequence of a member of this genus, Blastococcus saxobsidens strain DD2, isolated from below the surface of a Sardinian wall calcarenite stone sample.