Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fatima Mraiche is active.

Publication


Featured researches published by Fatima Mraiche.


Physiological Genomics | 2010

Elevated myocardial Na+/H+ exchanger isoform 1 activity elicits gene expression that leads to cardiac hypertrophy

Jin Xue; Fatima Mraiche; Dan Zhou; Morris Karmazyn; Tatsujiro Oka; Larry Fliegel; Gabriel G. Haddad

In myocardial disease, elevated expression and activity of Na(+)/H(+) exchanger isoform 1 (NHE1) are detrimental. To better understand the involvement of NHE1, transgenic mice with elevated heart-specific NHE1 expression were studied. N-line mice expressed wild-type NHE1, and K-line mice expressed activated NHE1. Cardiac morphology, interstitial fibrosis, and cardiac function were examined by histological staining and echocardiography. Differences in gene expression between the N-line or K-line and nontransgenic littermates were probed with genechip analysis. We found that NHE1 K-line (but not N-line) hearts developed hypertrophy, including elevated heart weight-to-body weight ratio and increased cross-sectional area of the cardiomyocytes, interstitial fibrosis, as well as depressed cardiac function. N-line hearts had modest changes in gene expression (50 upregulations and 99 downregulations, P < 0.05), whereas K-line hearts had a very strong transcriptional response (640 upregulations and 677 downregulations, P < 0.05). In addition, the magnitude of expression alterations was much higher in K-line than N-line mice. The most significant changes in gene expression were involved in cardiac hypertrophy, cardiac necrosis/cell death, and cardiac infarction. Secreted phosphoprotein 1 and its signaling pathways were upregulated while peroxisome proliferator-activated receptor gamma signaling was downregulated in K-line mice. Our study shows that expression of activated NHE1 elicits specific pathways of gene activation in the myocardium that lead to cardiac hypertrophy, cell death, and infarction.


British Journal of Pharmacology | 2005

Effects of statins on vascular function of endothelin-1.

Fatima Mraiche; Jonathan Cena; Debarsi Das; Bozena Vollrath

1 Although statins have been reported to inhibit the prepro‐endothelin‐1 (ET‐1) gene transcription in endothelial cells, their effects on the vascular function of ET‐1 have not been explored. We, therefore, examined the effects of statins on contraction and DNA synthesis mediated by ET‐1 in vascular smooth muscle. The effects of statins on contraction induced by ET‐1 were compared to those mediated by noradrenaline (NA) and KCl. 2 Simvastatin (SV) induced a concentration‐dependent relaxation of tonic contraction mediated by ET‐1 (10 nM) (IC50 value of 1.3 μM). The relaxation was also observed in rings precontracted with NA (0.1 μM) and KCl (60 mM). In contrast, pravastatin did not have any effect on the contractions. 3 Endothelial denudation or pretreatment with L‐NAME did not prevent the relaxation, but did reduce the relaxant activity of SV. 4 SV prevented Rho activation caused by ET‐1 and KCl in aortic homogenates, as assessed by a Rho pulldown assay. 5 The Rho kinase inhibitor HA‐1077 mimicked the effects of SV on tonic contractions induced by ET‐1, NA and KCl. 6 Pretreatment with the Kv channels inhibitor, 4‐aminopyridine, attenuated the ability of SV to relax contractions mediated by ET‐1 and NA. 7 In quiescent VSM cells, SV significantly inhibited DNA synthesis and Rho translocation stimulated by ET‐1, as assessed by [3H]thymidine incorporation and Western blot, respectively. 8 Inhibition of Rho geranylgeranylation by GGTI‐297, or treatment with HA‐1077, mimicked the effects of SV on DNA synthesis stimulated by ET‐1. 9 The results show that the statin potently inhibits both ET‐1‐mediated contraction and DNA synthesis via multiple mechanisms. Clinical benefits of statins may result, in part, from their effects on vascular function of ET‐1.


Basic Research in Cardiology | 2011

Activated NHE1 is required to induce early cardiac hypertrophy in mice.

Fatima Mraiche; Tatsujiro Oka; Xiaohong T. Gan; Morris Karmazyn; Larry Fliegel

The Na+/H+ exchanger isoform 1 (NHE1) has been implicated as being causal in cardiac hypertrophy and the protein level and activity are elevated in the diseased myocardium. However, it is unclear whether mere elevation of the protein is sufficient for cardiac pathology, or whether activation of the protein is required. In this study, we examined the comparative effects of elevation of wild type and activated NHE1. Two mouse transgenic models that expressed either a wild type NHE1 protein or an activated NHE1 protein were characterized. Expression of activated NHE1 caused significant increases in heart weight to body weight, apoptosis, cross-sectional area, interstitial fibrosis and decreased cardiac performance. Expression of wild type NHE1 caused a much milder pathology. When we examined 2 or 10-week-old mouse hearts, there was neither elevation of calcineurin levels nor increased phosphorylation of ERK or p38 in either NHE1 transgenic mouse line. Expression of activated NHE1 in intact mice caused an increased sensitivity to phenylephrine-induced hypertrophy. Our results show that expression of activated NHE1 promotes cardiac hypertrophy to a much greater degree than elevated levels of wild type NHE1 alone. In addition, expression of activated NHE1 promotes greater sensitivity to neurohormonal stimulation. The results suggest that activation of NHE1 is a key component that accentuates NHE1-induced myocardial pathology.


Molecular and Cellular Biochemistry | 2007

Expression and characterization of the Na + /H + exchanger in the mammalian myocardium

Ersilia Coccaro; Fatima Mraiche; Mackenzie Malo; Heather Vandertol-Vanier; Bonnie L. Bullis; Murray Robertson; Larry Fliegel

We examined two expression systems for studying the Na+/H+ exchanger in the mammalian myocardium. Mammalian NHE1 with a hemagglutinin (HA) tag and was cloned behind the alpha myosin heavy chain promoter. Transgenic mice were made with wild type NHE1 protein or with a hyperactive NHE1 protein mutated at the calmodulin-binding domain. Three lines of transgenic mice were made of each cDNA with expression levels of each type varying from high to low. Higher levels and activity of the Na+/H+ exchanger were associated with decreased long-term survival of mice, and with dilated or hypertrophic cardiomyopathy. The exogenous NHE1 protein was present in freshly made cardiomyocytes from transgenic mice, however, expression from the alpha myosin heavy chain promoter declined rapidly and little exogenous NHE1 was apparent on the fourth day after cardiomyocyte isolation. To express NHE1 protein in isolated cardiomyocytes, we transferred a mutated form of the protein into an adenoviral expression system. Infection of neonatal rat cardiomyocytes resulted in robust expression of the exogenous NHE1 protein. The mutant form of the NHE1 protein could be distinguished from the endogenous Na+/H+ exchanger by its resistance to inhibition by amiloride analogs. Our results suggest that for in vivo studies on intact hearts and animals, expression in transgenic mice is an appropriate system, however for long-term studies on cardiomyocytes, this model is inappropriate due to waning expression from the alpha myosin heavy chain promoter. Therefore, infection by adenovirus is a superior system for long-term studies on cardiomyocytes in culture.


Journal of Molecular and Cellular Cardiology | 2011

Elevated levels of activated NHE1 protect the myocardium and improve metabolism following ischemia/reperfusion injury

Fatima Mraiche; Cory S. Wagg; Gary D. Lopaschuk; Larry Fliegel

In the myocardium, the Na(+)/H(+) exchanger isoform 1 (NHE1) is a plasma membrane protein that regulates intracellular pH. Inhibition of NHE1 activity has been shown to be beneficial in cardiovascular disease. However, recent reports have suggested that elevation of NHE1 levels has beneficial effects in hearts subjected to ischemia/reperfusion. We determined if activated and non-activated NHE1 proteins have varying cardioprotective and metabolic effects with ischemia/reperfusion in the isolated perfused working mouse heart. We used transgenic mice hearts that specifically expressed wild type NHE1 (N-line) or activated NHE1 protein (K-line). Intact hearts 10-12 weeks of age were perfused under working conditions, with fatty acids and glucose present as substrates. Hearts were subjected to 30 min of aerobic perfusion, followed by 20 min of global no-flow ischemia and 40 min of aerobic reperfusion. We examined changes in contractility and substrate use and ATP levels. K-line hearts expressing activated NHE1, recovered to a much greater extent than N-line and control hearts recovering almost 75% of their preischemic function. In addition, K-line hearts had elevated fatty acid oxidation, increased glycolysis rates and elevated ATP levels relative to N-line mice or controls. An examination of kinase activation showed that there were no differences between controls and transgenics in ERK, p38, p90(rsk) or pGSK3β levels. The results demonstrate that elevated levels of NHE1 induce cardioprotection and alter cardiac metabolism. However, in the working heart model, with glucose and fatty acid as substrates, this required an activated NHE1 protein.


Molecular and Cellular Biochemistry | 2011

Elevated expression of activated Na + /H + exchanger protein induces hypertrophy in isolated rat neonatal ventricular cardiomyocytes

Fatima Mraiche; Larry Fliegel

The plasma membrane protein the Na+/H+ exchanger isoform1 (NHE1) has been implicated in various cardiac pathologies including ischemia/reperfusion damage to the myocardium and cardiac hypertrophy. Levels of NHE1 protein and activity are elevated in cardiac disease; however, the mechanism by which these factors contribute to the accompanying hypertrophy in the myocardium is still not clear. To investigate the mechanism of NHE1-induced hypertrophy in the myocardium we constructed two adenoviral vectors expressing either wild type NHE1 protein or a constitutively active NHE1 protein. Infection of neonatal rat ventricular cardiomyocytes (NRVM) resulted in elevated expression of both wild type NHE1 or constitutively active NHE1. Only expression of activated NHE1 protein resulted in an increase in cell size and in an increase in protein synthesis in isolated cardiomyocyte cells. The results demonstrate that expression of activated NHE1 promotes cardiac hypertrophy in isolated cardiac cells and that simple elevation of levels of wild type NHE1 protein does not have a significant hypertrophic effect in NRVM. The results suggest that regulation of NHE1 activity is a critical direct effector of the hypertrophic effect induced in the myocardium by the NHE1 protein.


Canadian Journal of Physiology and Pharmacology | 2008

Diastolic calcium is elevated in metabolic recovery of cardiomyocytes expressing elevated levels of the Na+/H+ exchanger

István Baczkó; Fatima Mraiche; Peter E. Light; Larry Fliegel

In the myocardium, the Na+/H+ exchanger isoform 1 (NHE1) plays a pivotal role in mediating ischemia-reperfusion (I/R) injury by causing intracellular Na+ accumulation that results in a subsequent increase in intracellular calcium (Ca2+ overload). One of the major clinical correlates of I/R injury is contractile dysfunction, in which Ca2+ overload via increased Na+/Ca2+ exchange is a major contributor. To better understand the cellular role of NHE1 during I/R injury, contractile function and calcium transients were measured during metabolic inhibition and recovery in single ventricular myocytes from transgenic mice with elevated NHE1 expression. During normoxic conditions, no differences were seen between NHE1-overexpressing cardiomyocytes and wild-type (WT) cardiomyocytes with respect to fractional cell shortening (FCS), rate of shortening (+dL/dt), and rate of relaxation (-dL/dt). When metabolic recovery followed metabolic inhibition, NHE1-overexpressing ventricular myocytes exhibited a significant increase in FCS (130.2% +/- 11.77% baseline) and +/-dL/dt (146.93% +/- 12.27% baseline). This correlated with a significant increase in the concentration of diastolic intracellular calcium, which was attenuated by the NHE1 inhibitor HOE694. These results indicate that in normoxic conditions, elevated NHE1 expression does not alter contractile function. During metabolic recovery, however, elevated NHE1 expression increased diastolic Ca2+ loading that led to augmented cell contractility.


Future Medicinal Chemistry | 2017

Anticancer potential of sanguinarine for various human malignancies

Iman W. Achkar; Fatima Mraiche; Ramzi M. Mohammad; Shahab Uddin

Sanguinarine (Sang) - a benzophenanthridine alkaloid extracted from Sanguinaria canadensis - exhibits antioxidant, anti-inflammatory, proapoptotic and growth inhibitory activities on tumor cells of various cancer types as established by in vivo and in vitro studies. Although the underlying mechanism of Sang antitumor activity is yet to be fully elucidated, Sang has displayed multiple biological effects, which remain to suggest its possible use in plant-derived treatments of human malignancies. This review covers the anticancer abilities of Sang including inhibition of aberrantly activated signal transduction pathways, induction of cell death and inhibition of cancer cell proliferation. It also highlights Sang-mediated inhibition of angiogenesis, inducing the expression of tumor suppressors, sensitization of cancer cells to standard chemotherapeutics to enhance their cytotoxic effects, while addressing the present need for further pharmacokinetic-based studies.


PLOS ONE | 2015

Na + /H + Exchanger Isoform 1-Induced Osteopontin Expression Facilitates Cardiomyocyte Hypertrophy

Iman A. Mohamed; Alain-Pierre Gadeau; Larry Fliegel; Gary D. Lopaschuk; Mohamed Mlih; Nabeel Abdulrahman; Natasha Fillmore; Fatima Mraiche

Enhanced expression and activity of the Na+/H+ exchanger isoform 1 (NHE1) has been implicated in cardiomyocyte hypertrophy in various experimental models. The upregulation of NHE1 was correlated with an increase in osteopontin (OPN) expression in models of cardiac hypertrophy (CH), and the mechanism for this remains to be delineated. To determine whether the expression of active NHE1-induces OPN and contributes to the hypertrophic response in vitro, cardiomyocytes were infected with the active form of the NHE1 adenovirus or transfected with OPN silencing RNA (siRNA-OPN) and characterized for cardiomyocyte hypertrophy. Expression of NHE1 in cardiomyocytes resulted in a significant increase in cardiomyocyte hypertrophy markers: cell surface area, protein content, ANP mRNA and expression of phosphorylated-GATA4. NHE1 activity was also significantly increased in cardiomyocytes expressing active NHE1. Interestingly, transfection of cardiomyocytes with siRNA-OPN significantly abolished the NHE1-induced cardiomyocyte hypertrophy. siRNA-OPN also significantly reduced the activity of NHE1 in cardiomyocytes expressing NHE1 (68.5±0.24%; P<0.05), confirming the role of OPN in the NHE1-induced hypertrophic response. The hypertrophic response facilitated by NHE1-induced OPN occurred independent of the extracellular-signal-regulated kinases and Akt, but required p90-ribosomal S6 kinase (RSK). The ability of OPN to facilitate the NHE1-induced hypertrophic response identifies OPN as a potential therapeutic target to reverse the hypertrophic effect induced by the expression of active NHE1.


Journal of Cellular Physiology | 2017

Myocardial proteases and cardiac remodeling

Sadaf Riaz; Asad Zeidan; Fatima Mraiche

Cardiac hypertrophy (CH), characterized by the enlargement of cardiomyocytes, fibrosis and apoptosis, is one of the leading causes of death worldwide. Despite the advances in cardiovascular research, there remains a need to further investigate the signaling pathways that mediate CH in order to identify novel therapeutic targets. One of the hallmarks of CH is the remodeling of the extracellular matrix (ECM). Multiple studies have shown an important role of cysteine proteases and matrix metalloproteinases (MMPs) in the remodeled heart. This review focuses on the role of cysteine cathepins and MMPs in cardiac remodeling.

Collaboration


Dive into the Fatima Mraiche's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge