Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fátima Sánchez-Cabo is active.

Publication


Featured researches published by Fátima Sánchez-Cabo.


Science | 2006

Type, density, and location of immune cells within human colorectal tumors predict clinical outcome

Jérôme Galon; Anne Costes; Fátima Sánchez-Cabo; Amos Kirilovsky; Bernhard Mlecnik; Christine Lagorce-Pagès; Marie Tosolini; Matthieu Camus; Anne Berger; Philippe Wind; Franck Zinzindohoue; Patrick Bruneval; Paul-Henri Cugnenc; Zlatko Trajanoski; Wolf-Herman Fridman; Franck Pagès

The role of the adaptive immune response in controlling the growth and recurrence of human tumors has been controversial. We characterized the tumor-infiltrating immune cells in large cohorts of human colorectal cancers by gene expression profiling and in situ immunohistochemical staining. Collectively, the immunological data (the type, density, and location of immune cells within the tumor samples) were found to be a better predictor of patient survival than the histopathological methods currently used to stage colorectal cancer. The results were validated in two additional patient populations. These data support the hypothesis that the adaptive immune response influences the behavior of human tumors. In situ analysis of tumor-infiltrating immune cells may therefore be a valuable prognostic tool in the treatment of colorectal cancer and possibly other malignancies.


Nature Communications | 2011

Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells

María Mittelbrunn; Cristina Gutiérrez-Vázquez; Carolina Villarroya-Beltri; Susana Gonzalez; Fátima Sánchez-Cabo; Manuel A. González; Antonio Bernad; Francisco Sánchez-Madrid

The immune synapse is an exquisitely evolved means of communication between T cells and antigen-presenting cells (APCs) during antigen recognition. Recent evidence points to the transfer of RNA via exosomes as a novel mode of intercellular communication. Here we show that exosomes of T, B and dendritic immune cells contain microRNA (miRNA) repertoires that differ from those of their parent cells. We investigate whether miRNAs are exchanged during cognate immune interactions, and demonstrate the existence of antigen-driven unidirectional transfer of miRNAs from the T cell to the APC, mediated by the delivery of CD63+ exosomes on immune synapse formation. Inhibition of exosome production by targeting neutral sphingomyelinase-2 impairs transfer of miRNAs to APCs. Moreover, miRNAs transferred during immune synapsis are able to modulate gene expression in recipient cells. Thus, our results support a mechanism of cellular communication involving antigen-dependent, unidirectional intercellular transfer of miRNAs by exosomes during immune synapsis.


Nature Communications | 2013

Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs

Carolina Villarroya-Beltri; Cristina Gutiérrez-Vázquez; Fátima Sánchez-Cabo; Daniel Pérez-Hernández; Jesús Vázquez; Noa B. Martín-Cófreces; Dannys Jorge Martínez-Herrera; Alberto Pascual-Montano; María Mittelbrunn; Francisco Sánchez-Madrid

Exosomes are released by most cells to the extracellular environment and are involved in cell-to-cell communication. Exosomes contain specific repertoires of mRNAs, microRNAs (miRNAs) and other non-coding RNAs that can be functionally transferred to recipient cells. However, the mechanisms that control the specific loading of RNA species into exosomes remain unknown. Here we describe sequence motifs present in miRNAs that control their localization into exosomes. The protein heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) specifically binds exosomal miRNAs through the recognition of these motifs and controls their loading into exosomes. Moreover, hnRNPA2B1 in exosomes is sumoylated, and sumoylation controls the binding of hnRNPA2B1 to miRNAs. The loading of miRNAs into exosomes can be modulated by mutagenesis of the identified motifs or changes in hnRNPA2B1 expression levels. These findings identify hnRNPA2B1 as a key player in miRNA sorting into exosomes and provide potential tools for the packaging of selected regulatory RNAs into exosomes and their use in biomedical applications.


BMC Genomics | 2007

Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation

Birgit Kulterer; Gerald Friedl; Anita Jandrositz; Fátima Sánchez-Cabo; Andreas Prokesch; Christine Paar; Marcel Scheideler; R. Windhager; Karl-Heinz Preisegger; Zlatko Trajanoski

BackgroundHuman mesenchymal stem cells (MSC) with the capacity to differentiate into osteoblasts provide potential for the development of novel treatment strategies, such as improved healing of large bone defects. However, their low frequency in bone marrow necessitate ex vivo expansion for further clinical application. In this study we asked if MSC are developing in an aberrant or unwanted way during ex vivo long-term cultivation and if artificial cultivation conditions exert any influence on their stem cell maintenance. To address this question we first developed human oligonucleotide microarrays with 30.000 elements and then performed large-scale expression profiling of long-term expanded MSC and MSC during differentiation into osteoblasts.ResultsThe results showed that MSC did not alter their osteogenic differentiation capacity, surface marker profile, and the expression profiles of MSC during expansion. Microarray analysis of MSC during osteogenic differentiation identified three candidate genes for further examination and functional analysis: ID4, CRYAB, and SORT1. Additionally, we were able to reconstruct the three developmental phases during osteoblast differentiation: proliferation, matrix maturation, and mineralization, and illustrate the activation of the SMAD signaling pathways by TGF-β2 and BMPs.ConclusionWith a variety of assays we could show that MSC represent a cell population which can be expanded for therapeutic applications.


Nucleic Acids Research | 2006

CARMAweb: comprehensive R- and bioconductor-based web service for microarray data analysis

Johannes Rainer; Fátima Sánchez-Cabo; Gernot Stocker; Alexander Sturn; Zlatko Trajanoski

CARMAweb (Comprehensive R-based Microarray Analysis web service) is a web application designed for the analysis of microarray data. CARMAweb performs data preprocessing (background correction, quality control and normalization), detection of differentially expressed genes, cluster analysis, dimension reduction and visualization, classification, and Gene Ontology-term analysis. This web application accepts raw data from a variety of imaging software tools for the most widely used microarray platforms: Affymetrix GeneChips, spotted two-color microarrays and Applied Biosystems (ABI) microarrays. R and packages from the Bioconductor project are used as an analytical engine in combination with the R function Sweave, which allows automatic generation of analysis reports. These report files contain all R commands used to perform the analysis and guarantee therefore a maximum transparency and reproducibility for each analysis. The web application is implemented in Java based on the latest J2EE (Java 2 Enterprise Edition) software technology. CARMAweb is freely available at .


Nucleic Acids Research | 2005

PathwayExplorer: web service for visualizing high-throughput expression data on biological pathways.

Bernhard Mlecnik; Marcel Scheideler; Hubert Hackl; Jürgen Hartler; Fátima Sánchez-Cabo; Zlatko Trajanoski

While generation of high-throughput expression data is becoming routine, the fast, easy, and systematic presentation and analysis of these data in a biological context is still an obstacle. To address this need, we have developed PathwayExplorer, which maps expression profiles of genes or proteins simultaneously onto major, currently available regulatory, metabolic and cellular pathways from KEGG, BioCarta and GenMAPP. PathwayExplorer is a platform-independent web server application with an optional standalone Java application using a SOAP (simple object access protocol) interface. Mapped pathways are ranked for the easy selection of the pathway of interest, displaying all available genes of this pathway with their expression profiles in a selectable and intuitive color code. Pathway maps produced can be downloaded as PNG, JPG or as high-resolution vector graphics SVG. The web service is freely available at ; the standalone client can be downloaded at .


eLife | 2014

The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function

Joan Isern; Andrés García-García; Ana M. Martín; Lorena Arranz; Daniel Martín-Pérez; Carlos Torroja; Fátima Sánchez-Cabo; Simón Méndez-Ferrer

Mesenchymal stem cells (MSCs) and osteolineage cells contribute to the hematopoietic stem cell (HSC) niche in the bone marrow of long bones. However, their developmental relationships remain unclear. In this study, we demonstrate that different MSC populations in the developing marrow of long bones have distinct functions. Proliferative mesoderm-derived nestin− MSCs participate in fetal skeletogenesis and lose MSC activity soon after birth. In contrast, quiescent neural crest-derived nestin+ cells preserve MSC activity, but do not generate fetal chondrocytes. Instead, they differentiate into HSC niche-forming MSCs, helping to establish the HSC niche by secreting Cxcl12. Perineural migration of these cells to the bone marrow requires the ErbB3 receptor. The neonatal Nestin-GFP+ Pdgfrα− cell population also contains Schwann cell precursors, but does not comprise mature Schwann cells. Thus, in the developing bone marrow HSC niche-forming MSCs share a common origin with sympathetic peripheral neurons and glial cells, and ontogenically distinct MSCs have non-overlapping functions in endochondrogenesis and HSC niche formation. DOI: http://dx.doi.org/10.7554/eLife.03696.001


Nature | 2016

Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing

Ana Latorre-Pellicer; Raquel Moreno-Loshuertos; Ana Victoria Lechuga-Vieco; Fátima Sánchez-Cabo; Carlos Torroja; Rebeca Acín-Pérez; Enrique Calvo; Esther Aix; Andrés González-Guerra; Angela Logan; María Luisa Bernad-Miana; Eduardo Romanos; Raquel Cruz; Sara Cogliati; Beatriz Sobrino; Angel Carracedo; Acisclo Pérez-Martos; Patricio Fernández-Silva; Jesús Ruiz-Cabello; Michael P. Murphy; Ignacio Flores; Jesús Vázquez; José Antonio Enríquez

Human mitochondrial DNA (mtDNA) shows extensive within-population sequence variability. Many studies suggest that mtDNA variants may be associated with ageing or diseases, although mechanistic evidence at the molecular level is lacking. Mitochondrial replacement has the potential to prevent transmission of disease-causing oocyte mtDNA. However, extension of this technology requires a comprehensive understanding of the physiological relevance of mtDNA sequence variability and its match with the nuclear-encoded mitochondrial genes. Studies in conplastic animals allow comparison of individuals with the same nuclear genome but different mtDNA variants, and have provided both supporting and refuting evidence that mtDNA variation influences organismal physiology. However, most of these studies did not confirm the conplastic status, focused on younger animals, and did not investigate the full range of physiological and phenotypic variability likely to be influenced by mitochondria. Here we systematically characterized conplastic mice throughout their lifespan using transcriptomic, proteomic, metabolomic, biochemical, physiological and phenotyping studies. We show that mtDNA haplotype profoundly influences mitochondrial proteostasis and reactive oxygen species generation, insulin signalling, obesity, and ageing parameters including telomere shortening and mitochondrial dysfunction, resulting in profound differences in health longevity between conplastic strains.


Molecular and Cellular Biology | 2005

Global gene expression profiling reveals widespread yet distinctive translational responses to different eukaryotic translation initiation factor 2B-targeting stress pathways

Julia B. Smirnova; Julian N. Selley; Fátima Sánchez-Cabo; Kathleen M. Carroll; A. Alan Eddy; John E. G. McCarthy; Simon J. Hubbard; Graham D. Pavitt; Chris M. Grant; Mark P. Ashe

ABSTRACT Global inhibition of protein synthesis is a hallmark of many cellular stress conditions. Even though specific mRNAs defy this (e.g., yeast GCN4 and mammalian ATF4), the extent and variation of such resistance remain uncertain. In this study, we have identified yeast mRNAs that are translationally maintained following either amino acid depletion or fusel alcohol addition. Both stresses inhibit eukaryotic translation initiation factor 2B, but via different mechanisms. Using microarray analysis of polysome and monosome mRNA pools, we demonstrate that these stress conditions elicit widespread yet distinct translational reprogramming, identifying a fundamental role for translational control in the adaptation to environmental stress. These studies also highlight the complex interplay that exists between different stages in the gene expression pathway to allow specific preordained programs of proteome remodeling. For example, many ribosome biogenesis genes are coregulated at the transcriptional and translational levels following amino acid starvation. The transcriptional regulation of these genes has recently been connected to the regulation of cellular proliferation, and on the basis of our results, the translational control of these mRNAs should be factored into this equation.


Bioinformatics | 2015

GOplot: an R package for visually combining expression data with functional analysis

Wencke Walter; Fátima Sánchez-Cabo; Mercedes Ricote

UNLABELLED Despite the plethora of methods available for the functional analysis of omics data, obtaining comprehensive-yet detailed understanding of the results remains challenging. This is mainly due to the lack of publicly available tools for the visualization of this type of information. Here we present an R package called GOplot, based on ggplot2, for enhanced graphical representation. Our package takes the output of any general enrichment analysis and generates plots at different levels of detail: from a general overview to identify the most enriched categories (bar plot, bubble plot) to a more detailed view displaying different types of information for molecules in a given set of categories (circle plot, chord plot, cluster plot). The package provides a deeper insight into omics data and allows scientists to generate insightful plots with only a few lines of code to easily communicate the findings. AVAILABILITY AND IMPLEMENTATION The R package GOplot is available via CRAN-The Comprehensive R Archive Network: http://cran.r-project.org/web/packages/GOplot. The shiny web application of the Venn diagram can be found at: https://wwalter.shinyapps.io/Venn/. A detailed manual of the package with sample figures can be found at https://wencke.github.io/ CONTACT [email protected] or [email protected].

Collaboration


Dive into the Fátima Sánchez-Cabo's collaboration.

Top Co-Authors

Avatar

Ana Dopazo

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Zlatko Trajanoski

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Carlos Torroja

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Hubert Hackl

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Jesús Vázquez

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

José Antonio Enríquez

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Enrique Lara-Pezzi

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Ana Victoria Lechuga-Vieco

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Vicente Andrés

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Andreas Prokesch

Graz University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge