Fatthy Mohamed Morsy
Assiut University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fatthy Mohamed Morsy.
Microbiological Research | 2014
Mohamed Hemida Abd-Alla; Abdel-Wahab Elsadek El-Enany; Nivien Allam Nafady; David Mamdouh Khalaf; Fatthy Mohamed Morsy
Egyptian soils are generally characterized by slightly alkaline to alkaline pH values (7.5-8.7) which are mainly due to its dry environment. In arid and semi-arid regions, salts are less concentrated and sodium dominates in carbonate and bicarbonate forms, which enhance the formation of alkaline soils. Alkaline soils have fertility problems due to poor physical properties which adversely affect the growth and the yield of crops. Therefore, this study was devoted to investigating the synergistic interaction of Rhizobium and arbuscular mycorrhizal fungi for improving growth of faba bean grown in alkaline soil. A total of 20 rhizobial isolates and 4 species of arbuscular mycorrhizal fungi (AMF) were isolated. The rhizobial isolates were investigated for their ability to grow under alkaline stress. Out of 20 isolates 3 isolates were selected as tolerant isolates. These 3 rhizobial isolates were identified on the bases of the sequences of the gene encoding 16S rRNA and designated as Rhizobium sp. Egypt 16 (HM622137), Rhizobium sp. Egypt 27 (HM622138) and Rhizobium leguminosarum bv. viciae STDF-Egypt 19 (HM587713). The best alkaline tolerant was R. leguminosarum bv. viciae STDF-Egypt 19 (HM587713). The effect of R. leguminosarum bv. viciae STDF-Egypt 19 and mixture of AMF (Acaulospora laevis, Glomus geosporum, Glomus mosseae and Scutellospora armeniaca) both individually and in combination on nodulation, nitrogen fixation and growth of Vicia faba under alkalinity stress were assessed. A significant increase over control in number and mass of nodules, nitrogenase activity, leghaemoglobin content of nodule, mycorrhizal colonization, dry mass of root and shoot was recorded in dual inoculated plants than plants with individual inoculation. The enhancement of nitrogen fixation of faba bean could be attributed to AMF facilitating the mobilization of certain elements such as P, Fe, K and other minerals that involve in synthesis of nitrogenase and leghaemoglobin. Thus it is clear that the dual inoculation with Rhizobium and AMF biofertilizer is more effective for promoting growth of faba bean grown in alkaline soils than the individual treatment, reflecting the existence of synergistic relationships among the inoculants.
Photochemistry and Photobiology | 2011
Fatthy Mohamed Morsy
This work was devoted to separate acetate role in creating anaerobiosis from that of sulfur deprivation. Chlamydomonas reinhardtii grown in TAP (Tris–acetate–phosphate) medium was resuspended in sulfur‐replete or ‐deprived medium in sealed or nonsealed cultures. Sulfur deprivation was substantial for starch accumulation and hydrogen evolution; however, acetate induced anaerobiosis in the presence or absence of sulfur in only sealed cultures. In nonsealed cultures, Chlamydomonas did not lose its photosynthetic activity; however, it was arrested in anoxia with no photosynthetic activity as long as the culture was sealed. The sealed cultures resumed photosynthesis upon unsealing overnight unless the cells died by anoxia at late stage of the experiment. These results indicate that the enhanced oxygen consumption for the enormous acetate respiration and inhibition of the external oxygen supply in sealed cultures of Chlamydomonas are the main reasons for the steady anaerobic conditions. Although acetate was substantial for creating anaerobiosis in Chlamydomonas, sulfur deprivation alone could create anaerobiosis in Spirulina platensis grown autotrophically. Hydrogen evolution and glycogen accumulation were induced under such conditions. Severely reduced phycocyanin, chlorophyll and photosynthesis, while respiration had increased, induced anaerobiosis in Spirulina. This study reports for the first time anaerobiosis under autotrophic conditions in a cyanobacterium.
Anaerobe | 2015
Elhagag Ahmed Hassan; Mohamed Hemida Abd-Alla; M. M. K. Bagy; Fatthy Mohamed Morsy
An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production.
Archives of Microbiology | 2015
Fatthy Mohamed Morsy
Abstract In the last two decades, a large number of literature had focused on the biosynthesis of silver nanoparticles (AgNPs) from silver ions by bacteria and other microorganisms. This study infers that bacteria and other microorganisms do not per se synthesize AgNPs. All tested auto- and heterotrophic microorganisms in this study were killed by silver ions and could not as viable cells produce AgNPs. Microbial cell viability represented in colony-forming units and metabolic viability represented in aerobic respiration in all investigated microorganisms as well as photosynthesis in photoautotrophic microorganisms ceased by silver ions too early before AgNPs formation. The time required for AgNPs synthesis inversely related to the incubation temperature of the investigated microorganisms with silver ions where it requires only few minutes for nanoparticles formation at high temperature or autoclaving. The minimum inhibitory and minimum bactericidal and fungicidal concentrations of silver ions were significantly lower than AgNPs, indicating that silver ions are more efficient antimicrobial. The results presented in this study indicate that formation of AgNPs by eubacteria, cyanobacteria and fungi is not a vitally regulated cellular metabolic process and the mechanism occurs via bioreduction of silver ions to nanoparticles by organics released from the dead cells.
Journal of Photochemistry and Photobiology B-biology | 2017
Fatthy Mohamed Morsy
This study investigated synergistic dark and photo-fermentation using continuous fermentation system (CFS). The system relies on connecting several fermenters from bottom of one to top culture level of the next in a manner that allows for delaying movement of the substrate and thus for its full consumption. While H2 was collected, CFS allowed for moving liquid byproducts toward the outlet and hence continuous productivity. CFS could be efficiently used for: (1) Continuous dark and photo-fermentation H2 production by Clostridium acetobutylicum and Rhodobacter capsulatus producing 5.65moleH2mole-1 hexose; (2) Continuous dark-fermentation synergistic H2, acetone, butanol and ethanol (ABE) production by C. acetobutylicum which produced per mole hexose, 2.43mol H2 along with 73.08g ABE (3) Continuous H2 and methane production by C. acetobutylicum and bacterial sludge producing, per mole hexose, 1.64mol pure H2 and 2.56mol CH4 mixed with 0.37mol H2·The hydraulic retention time (HRT) for whole system was short where organic acids produced in dark-fermentation in first fermenter were synergistically utilized for H2 production by R. capsulatus in subsequent fermenters. CFS is suitable for fast-digestible sugars but not lignocelluloses or other hard-digestible organics, requiring prolonged HRT, unless such polymeric organics were hydrolyzed prior to fermentation.
Enzyme and Microbial Technology | 2015
Sedky H.A. Hassan; Fatthy Mohamed Morsy
Using Escherichia coli for installing and maintaining anaerobiosis for hydrogen production by Clostridium acetobutylicum ATCC 824 is a cost-effective approach for industrial hydrogen production, as it does not require reducing agents or sparging with inert gases. This study was devoted for investigating the feasibility for installing and maintaining anaerobiosis of hydrogen production by C. acetobutylicum ATCC 824 when using E. coli HD701 utilizable versus non utilizable sugars as a-carbon source. Using E. coli HD701 for installing anaerobiosis showed a comparable hydrogen production yield and efficiency to the use of reducing agents and nitrogen sparging in case of hydrogen production from the E. coli HD701 non utilizable sugars. In contrast, using E. coli HD701 for installing anaerobiosis showed a lower hydrogen production yield and efficiency than the use of reducing agents and nitrogen sparging in case of using glucose as a substrate. This is possibly because E. coli HD701 when using glucose compensate for the substrate, and produce hydrogen with lower efficiency than C. acetobutylicum ATCC 824. These results indicated that the use of E. coli HD701 for installing anaerobiosis would not be economically feasible when using E. coli HD701 utilizable sugars as a carbon source. In contrast, the use of this approach for installing anaerobiosis for hydrogen production from sucrose and starch would have a high potency for industrial applications.
International Journal of Hydrogen Energy | 2011
Mohamed Hemida Abd-Alla; Fatthy Mohamed Morsy; Abdel-Wahab Elsadek El-Enany
International Biodeterioration & Biodegradation | 2012
Mohamed Hemida Abd-Alla; Fatthy Mohamed Morsy; Abdel-Wahab Elsadek El-Enany; Takuji Ohyama
Clean-soil Air Water | 2011
Fatthy Mohamed Morsy; Sedky H.A. Hassan; Mostafa Koutb
International Journal of Hydrogen Energy | 2014
M. M. K. Bagy; Mohamed Hemida Abd-Alla; Fatthy Mohamed Morsy; Elhagag Ahmed Hassan