Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Faustino López-Rodríguez is active.

Publication


Featured researches published by Faustino López-Rodríguez.


Brain Research | 1999

In vivo microdialysis measures of extracellular serotonin in the rat hippocampus during sleep-wakefulness.

Sung Pa Park; Faustino López-Rodríguez; Charles L. Wilson; Nigel T. Maidment; Yosuke Matsumoto; Jerome Engel

We investigated extracellular 5-hydroxytryptamine (5-HT) levels in rat hippocampus during different stages of the sleep-waking cycle using in vivo microdialysis. The extracellular 5-HT level was highest in active waking (AW) and, when compared to AW, 5-HT level was progressively lower in quiet waking (QW; 78%), quiet sleep (QS; 50%) and REM (which we termed active sleep (AS); 40%). Functional implications of AS related-decreased 5-HT in the hippocampus are discussed.


Neuroscience | 1995

Fos and serotonin immunoreactivity in the raphe nuclei of the cat during carbachol-induced active sleep: A double-labeling study

Jack Yamuy; Sharon Sampogna; Faustino López-Rodríguez; Pierre-Hervé Luppi; Francisco R. Morales; Michael H. Chase

The microinjection of carbachol into the nucleus pontis oralis produces a state which is polygraphically and behaviorally similar to active sleep (rapid eye movement sleep). In the present study, using double-labeling techniques for serotonin and the protein product of c-fos (Fos), we sought to examine whether immunocytochemically identified serotonergic neurons of the raphe nuclei of the cat were activated, as indicated by their expression of c-fos, during this pharmacologically-induced behavioral state (active sleep-carbachol). Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited a significantly greater number of c-fos-expressing neurons in the raphe dorsalis, magnus and pallidus. Whereas most of the c-fos-expressing neurons in the raphe dorsalis were small, those in the raphe magnus were medium-sized and in the raphe pallidus they were small and medium-sized. The mean number of serotonergic neurons that expressed c-fos (i.e. double-labeled cells) was similar in control and active sleep-carbachol cats. These data indicate that there is an increased number of non-serotonergic, c-fos-expressing neurons in the raphe dorsalis, magnus and pallidus during the carbachol-induced state.(ABSTRACT TRUNCATED AT 250 WORDS)


Neuroscience | 2003

Total sleep deprivation increases extracellular serotonin in the rat hippocampus.

Faustino López-Rodríguez; Charles L. Wilson; Nigel T. Maidment; Russell E. Poland; Jerome Engel

Sleep deprivation exerts antidepressant effects after only one night of deprivation, demonstrating that a rapid antidepressant response is possible. In this report we tested the hypothesis that total sleep deprivation induces an increase in extracellular serotonin (5-HT) levels in the hippocampus, a structure that has been proposed repeatedly to play a role in the pathophysiology of depression. Sleep deprivation was performed using the disk-over-water method. Extracellular levels of 5-HT were determined in 3 h periods with microdialysis and measured by high performance liquid chromatography coupled with electrochemical detection. Sleep deprivation induced an increase in 5-HT levels during the sleep deprivation day. During an additional sleep recovery day, 5-HT remained elevated even though rats displayed normal amounts of sleep. Stimulus control rats, which had been allowed to sleep, did not experience a significant increased in 5-HT levels, though they were exposed to a stressful situation similar to slee-deprived rats. These results are consistent with a role of 5-HT in the antidepressant effects of sleep deprivation.


Brain Research | 1995

Muscle atonia can be induced by carbachol injections into the nucleus pontis oralis in cats anesthetized with α-chloralose

Faustino López-Rodríguez; Kristi A. Kohlmeier; Jack Yamuy; Francisco R. Morales; Michael H. Chase

Cholinergic excitation of structures in the pontine reticular formation appears to be a key step in the generation of active sleep. For example, muscle atonia which occurs as a result of the postsynaptic inhibition of motoneurons during active sleep is also present after carbachol, a cholinergic agonist, is injected into the nucleus pontis oralis. In the present study, in order to obtain information regarding the mechanisms that generate atonia during active sleep and to provide a paradigm for studying atonia in anesthetized cats, we determined whether cholinergically induced atonia could be generated in an animal that was anesthetized with alpha-chloralose. Cats which were initially anesthetized with alpha-chloralose (40 mg/kg, I.V.) exhibited spikes in the EEG, hippocampus and lateral geniculate nuclei. Muscle atonia occurred after carbachol (200 mM) was injected by microiontophoresis (300-500 nA) into the nucleus pontis oralis; the spikes in the EEG, hippocampus and lateral geniculate nuclei were still present. We believe that the atonia induced by carbachol in alpha-chloralose-anesthetized cats is mediated by the same mechanisms that operate during active sleep in the unanesthetized animal for the following reasons. First, in the same cats when they were not anesthetized with alpha-chloralose, carbachol injections in the identical brainstem sites induced active sleep with its accompanying pattern of muscle atonia. Second, after carbachol was injected into the same sites in alpha-chloralose-anesthetized cats, intracellular recordings from lumbar motoneurons revealed that inhibitory postsynaptic potentials were bombarding motoneurons; these inhibitory potentials were similar to those which are present during naturally occurring active sleep. In addition, stimulation of the nucleus reticularis gigantocellularis (NRGc) was found to induce large amplitude depolarizing potentials in lumbar motoneurons in alpha-chloralose-anesthetized cats prior to the administration of carbachol, whereas after its administration, accompanying muscle atonia there were large amplitude hyperpolarizing potentials and a reduction in the amplitude of depolarizing potentials. We therefore conclude that the cholinergically induced processes that initiate and maintain muscle atonia are not blocked by the actions of alpha-chloralose.


Brain Research | 1994

State dependency of the effects of microinjection of cholinergic drugs into the nucleus pontis oralis.

Faustino López-Rodríguez; Kristi A. Kohlmeier; Francisco R. Morales; Michael H. Chase

The microinjection of cholinergic drugs into the pontine reticular formation elicits active sleep-like states that are comprised of the principal physiological patterns of activity that characterize naturally-occurring active sleep, i.e., EEG desynchronization, PGO waves, rapid eye movements and atonia. We have reported that other behavioral states arise even when cholinergic drugs are injected into the exact same reticular location. The present study was conducted to explore the basis for the differences in the drug effect. A combination of acetylcholine and neostigmine was injected by microiontophoresis into the dorsal region of the nucleus pontis oralis in four chronic, unanesthetized cats. The states that were induced by cholinergic drug injection depended on the state of the animal at the time of the injection. When the animal was awake, cholinergic injections resulted in a waking-dissociated state, which was characterized by EEG desynchronization and muscle atonia in a cat that appeared to be awake and was able to track objects in its visual field. If the cat was in quiet sleep at the time of the injection, an active sleep-like state followed that was indistinguishable from naturally-occurring active sleep; on a few occasions following cholinergic injections during quiet sleep there was a quiet sleep-dissociated state, which was characterized by PGO waves and muscle atonia in the cat that by other indices appeared to be in quiet sleep. The results of this study indicate that the state of the animal at the time of drug injection is a critical variable that influences the responses which are induced by cholinergic stimulation of the pontine reticular formation.


Neuroscience | 1997

Strychnine blocks inhibitory postsynaptic potentials elicited in masseter motoneurons by sensory stimuli during carbachol-induced motor atonia

Kristi A. Kohlmeier; Faustino López-Rodríguez; Michael H. Chase

In previous studies we reported that large-amplitude inhibitory potentials were elicited in masseter motoneurons by auditory stimuli (95-dB clicks) and stimulation of the sciatic nerve in alpha-chloralose-anesthetized cats [Kohlmeier K. A. et al. (1994) Soc. Neurosci. Abstr. 20, 1218; Kohlmeier K. A. et al. (1995) Sleep Res. 24, 9]. These potentials were always elicited during motor atonia induced by the pontine injection of carbachol into the nucleus pontis oralis and were never elicited prior to atonia. In the present report, the hyperpolarizing potentials that arose in response to clicks and stimulation of the sciatic nerve were blocked following the juxtacellular application of strychnine, a glycinergic antagonist. In contrast, bicuculline, a GABA(A) receptor antagonist, did not suppress the carbachol-dependent hyperpolarizing potentials elicited by these stimuli. In some motoneurons, blockade of the inhibitory potential by strychnine revealed a depolarizing potential. These data suggest that clicks and stimulation of the sciatic nerve not only elicit inhibition of motoneurons but also activate an excitatory drive which is masked by elicited inhibitory postsynaptic potentials. These findings suggest that glycine is likely to be the neurotransmitter that is responsible for the inhibitory postsynaptic potentials elicited in masseter motoneurons following the presentation of auditory and somatosensory stimuli during carbachol-induced motor atonia. We suggest that the same system that mediates glycinergically-dependent motor atonia during naturally occurring active sleep [Chase M. H. et al. (1989) J. Neurosci. 9, 743-751] also mediates the carbachol-dependent response of motoneurons to sensory stimuli.


Neuroscience | 1998

Effects of excitation of sensory pathways on the membrane potential of cat masseter motoneurons before and during cholinergically induced motor atonia

Kristi A. Kohlmeier; Faustino López-Rodríguez; Francisco R. Morales; Michael H. Chase

Electrical stimulation of the nucleus pontis oralis during wakefulness enhances somatic reflex activity; identical stimuli during the motor atonia of active (rapid eye movement) sleep induces reflex suppression. This phenomenon, which is called reticular response-reversal, is based upon the generation of excitatory postsynaptic potential activity in motoneurons during wakefulness and inhibitory postsynaptic potential activity during the motor atonia of active sleep. In the present study, instead of utilizing artificial electrical stimulation to directly excite brainstem structures, we sought to examine the effects on motoneurons of activation of sensory pathways by exogenously applied stimuli (auditory) and by stimulation of a peripheral (sciatic) nerve. Accordingly, we examined the synaptic response of masseter motoneurons prior to and during cholinergically induced motor atonia in a pharmacological model of active sleep-specific motor atonia, the alpha-chloralose-anesthetized cat, to two different types of afferent input, one of which has been previously demonstrated to elicit excitatory motor responses during wakefulness. Following the pontine injection of carbachol, auditory stimuli (95 dB clicks) elicited a hyperpolarizing potential in masseter motoneurons. Similar responses were obtained upon stimulation of the sciatic nerve. Responses of this nature were never seen prior to the injection of carbachol. Thus, stimulation of two different afferent pathways (auditory and somatosensory) that produce excitatory motor responses during wakefulness instead, during motor atonia, results in the inhibition of masseter motoneurons. The switching of the net result of the synaptic response from one of potential motor excitation to primarily inhibition in response to the activation of sensory pathways was comparable to the phenomenon of reticular response-reversal. This is the first report to examine the synaptic mechanisms whereby exogenously or peripherally applied stimuli that elicit motor excitation during wakefulness instead elicit inhibitory motor responses during the motor atonia of active sleep. Thus, not only are motoneurons tonically inhibited during active sleep, but the selective elicitation of inhibitory motor responses indicates that this inhibition can be phasically increased in response to sensory stimuli, possibly in order to maintain the state of active sleep. The data provided the foundation for the hypothesis that, during naturally occurring active sleep, there is a change in the control of motor systems so that motor suppression occurs in response to stimuli that would otherwise, if present during other behavioral states, result in the facilitation of motor activity.


Archives of Medical Research | 2007

Changes in Extracellular Glutamate Levels in Rat Orbitofrontal Cortex During Sleep and Wakefulness

Faustino López-Rodríguez; Laura Medina-Ceja; Charles L. Wilson; Donald Jhung; Alberto Morales-Villagrán


Brain Research | 1996

State-dependent phenomena in cat masseter motoneurons.

Kristi A. Kohlmeier; Faustino López-Rodríguez; Rong-Huan Liu; Francisco R. Morales; Michael H. Chase


Sleep | 2006

Extracellular Adenosine in the Human Brain During Sleep and Sleep Deprivation: An in Vivo Microdialysis Study

Jamie M. Zeitzer; Alberto Morales-Villagrán; Nigel T. Maidment; Eric Behnke; Larry C. Ackerson; Faustino López-Rodríguez; Itzhak Fried; Jerome Engel; Charles L. Wilson

Collaboration


Dive into the Faustino López-Rodríguez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerome Engel

University of California

View shared research outputs
Top Co-Authors

Avatar

Jack Yamuy

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald Jhung

University of California

View shared research outputs
Top Co-Authors

Avatar

Eric Behnke

University of California

View shared research outputs
Top Co-Authors

Avatar

Itzhak Fried

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge