Fausto Carnevale Neto
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fausto Carnevale Neto.
Analytical Chemistry | 2013
Haiwei Gu; G. A. Nagana Gowda; Fausto Carnevale Neto; Mark R. Opp; Daniel Raftery
The complexity of biological samples poses a major challenge for reliable compound identification in mass spectrometry (MS). The presence of interfering compounds that cause additional peaks in the spectrum can make interpretation and assignment difficult. To overcome this issue, new approaches are needed to reduce complexity and simplify spectral interpretation. Recently, focused on unknown metabolite identification, we presented a new approach, RANSY (ratio analysis of nuclear magnetic resonance spectroscopy; Anal. Chem. 2011, 83, 7616-7623), which extracts the (1)H signals related to the same metabolite based on peak intensity ratios. On the basis of this concept, we present the ratio analysis of mass spectrometry (RAMSY) method, which facilitates improved compound identification in complex MS spectra. RAMSY works on the principle that, under a given set of experimental conditions, the abundance/intensity ratios between the mass fragments from the same metabolite are relatively constant. Therefore, the quotients of average peak ratios and their standard deviations, generated using a small set of MS spectra from the same ion chromatogram, efficiently allow the statistical recovery of the metabolite peaks and facilitate reliable identification. RAMSY was applied to both gas chromatography/MS and liquid chromatography tandem MS (LC-MS/MS) data to demonstrate its utility. The performance of RAMSY is typically better than the results from correlation methods. RAMSY promises to improve unknown metabolite identification for MS users in metabolomics or other fields.
Angewandte Chemie | 2016
Haiwei Gu; Patrick A. Carroll; Jianhai Du; Jiangjiang Zhu; Fausto Carnevale Neto; Robert N. Eisenman; Daniel Raftery
The balance between metabolism and biomass is very important in biological systems; however, to date there has been no quantitative method to characterize the balance. In this methodological study, we propose to use the distribution of amino acids in different domains to investigate this balance. It is well known that endogenous or exogenous amino acids in a biological system are either metabolized or incorporated into free amino acids (FAAs) or proteome amino acids (PAAs). Using glycine (Gly) as an example, we demonstrate a novel method to accurately determine the amounts of amino acids in various domains using serum, urine, and cell samples. As expected, serum and urine had very different distributions of FAA- and PAA-Gly. Using Tet21N human neuroblastoma cells, we also found that Myc(oncogene)-induced metabolic reprogramming included a higher rate of metabolizing Gly, which provides additional evidence that the metabolism of proliferating cells is adapted to facilitate producing new cells. It is therefore anticipated that our method will be very valuable for further studies of the metabolism and biomass balance that will lead to a better understanding of human cancers.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Carlos Taboada; Andrés E. Brunetti; Federico N. Pedron; Fausto Carnevale Neto; Darío A. Estrin; Sara E. Bari; Lucía B. Chemes; Norberto Peporine Lopes; María Gabriela Lagorio; Julián Faivovich
Significance In this interdisciplinary study, we report naturally occurring fluorescence in amphibians; specifically, in a common South American tree frog. We show that fluorescence is traceable to a class of compound that occurs in lymph and skin glands. Our study indicates that in our model species, in low-light conditions, fluorescence accounts for an important fraction of the total emerging light, largely enhancing brightness of the individuals and matching the sensitivity of night vision in amphibians. These findings open an exciting perspective into frog visual physiology and ecology and into the role of fluorescence in terrestrial environments, where classically it has been considered irrelevant. Fluorescence, the absorption of short-wavelength electromagnetic radiation reemitted at longer wavelengths, has been suggested to play several biological roles in metazoans. This phenomenon is uncommon in tetrapods, being restricted mostly to parrots and marine turtles. We report fluorescence in amphibians, in the tree frog Hypsiboas punctatus, showing that fluorescence in living frogs is produced by a combination of lymph and glandular emission, with pigmentary cell filtering in the skin. The chemical origin of fluorescence was traced to a class of fluorescent compounds derived from dihydroisoquinolinone, here named hyloins. We show that fluorescence contributes 18−29% of the total emerging light under twilight and nocturnal scenarios, largely enhancing brightness of the individuals and matching the sensitivity of night vision in amphibians. These results introduce an unprecedented source of pigmentation in amphibians and highlight the potential relevance of fluorescence in visual perception in terrestrial environments.
Analyst | 2015
Haiwei Gu; Jianhai Du; Fausto Carnevale Neto; Patrick A. Carroll; Sally J. Turner; E. Gabriela Chiorean; Robert N. Eisenman; Daniel Raftery
Amino acids play essential roles in both metabolism and the proteome. Many studies have profiled free amino acids (FAAs) or proteins; however, few have connected the measurement of FAA with individual amino acids in the proteome. In this study, we developed a metabolomics method to comprehensively analyze amino acids in different domains, using two examples of different sample types and disease models. We first examined the responses of FAAs and insoluble-proteome amino acids (IPAAs) to the Myc oncogene in Tet21N human neuroblastoma cells. The metabolic and proteomic amino acid profiles were quite different, even under the same Myc condition, and their combination provided a better understanding of the biological status. In addition, amino acids were measured in 3 domains (FAAs, free and soluble-proteome amino acids (FSPAAs), and IPAAs) to study changes in serum amino acid profiles related to colon cancer. A penalized logistic regression model based on the amino acids from the three domains had better sensitivity and specificity than that from each individual domain. To the best of our knowledge, this is the first study to perform a combined analysis of amino acids in different domains, and indicates the useful biological information available from a metabolomics analysis of the protein pellet. This study lays the foundation for further quantitative tracking of the distribution of amino acids in different domains, with opportunities for better diagnosis and mechanistic studies of various diseases.
Rapid Communications in Mass Spectrometry | 2016
Fausto Carnevale Neto; Thais Guaratini; Letícia V. Costa-Lotufo; Pio Colepicolo; Paul J. Gates; Norberto Peporine Lopes
RATIONALE Carotenoids are polyene isoprenoids with an important role in photosynthesis and photoprotection. Their characterization in biological matrices is a crucial subject for biochemical research. In this work we report the full fragmentation of 16 polyenes (carotenes and xanthophylls) by electrospray ionization tandem mass spectrometry (ESI-CID-MS/MS) and nanospray tandem mass spectrometry (nanoESI-CID-MS/MS). METHODS Analyses were carried out on a quadrupole time-of-flight (QTOF) mass spectrometer coupled with a nanoESI source and on a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer with an ESI source. The formulae of the product ions were determined by accurate-mass measurements. RESULTS It is demonstrated that the fragmentation routes observed for the protonated carotenoids derive essentially from charge-remote fragmentations and pericyclic rearrangements, such as electrocyclic and retro-ene eliminations (assisted or not by a sigmatropic hydrogen shift). All mechanisms are dependent on cis-trans isomerization through the formation of several conjugated polyene carbocation intermediates. Some specific ions for the carotenoid epoxides were justified through formation of cyclic oxonium ions. CONCLUSIONS Complete fragmentation pathways of protonated carotenoids by ESI- and nanoESI-CID-MS/MS provided structural information about functional groups, polyene chain and double bonds, and contribute to identification of carotenoids based on MS/MS fragmentation patterns. Copyright
Frontiers in Molecular Biosciences | 2016
Fausto Carnevale Neto; Alan Cesar Pilon; Denise M. Selegato; Rafael T. Freire; Haiwei Gu; Daniel Raftery; Norberto Peporine Lopes; Ian Castro-Gamboa
Dereplication based on hyphenated techniques has been extensively applied in plant metabolomics, thereby avoiding re-isolation of known natural products. However, due to the complex nature of biological samples and their large concentration range, dereplication requires the use of chemometric tools to comprehensively extract information from the acquired data. In this work we developed a reliable GC-MS-based method for the identification of non-targeted plant metabolites by combining the Ratio Analysis of Mass Spectrometry deconvolution tool (RAMSY) with Automated Mass Spectral Deconvolution and Identification System software (AMDIS). Plants species from Solanaceae, Chrysobalanaceae and Euphorbiaceae were selected as model systems due to their molecular diversity, ethnopharmacological potential, and economical value. The samples were analyzed by GC-MS after methoximation and silylation reactions. Dereplication was initiated with the use of a factorial design of experiments to determine the best AMDIS configuration for each sample, considering linear retention indices and mass spectral data. A heuristic factor (CDF, compound detection factor) was developed and applied to the AMDIS results in order to decrease the false-positive rates. Despite the enhancement in deconvolution and peak identification, the empirical AMDIS method was not able to fully deconvolute all GC-peaks, leading to low MF values and/or missing metabolites. RAMSY was applied as a complementary deconvolution method to AMDIS to peaks exhibiting substantial overlap, resulting in recovery of low-intensity co-eluted ions. The results from this combination of optimized AMDIS with RAMSY attested to the ability of this approach as an improved dereplication method for complex biological samples such as plant extracts.
Rapid Communications in Mass Spectrometry | 2016
Fausto Carnevale Neto; Thais Guaratini; Letícia V. Costa-Lotufo; Pio Colepicolo; Paul J. Gates; Norberto Peporine Lopes
RATIONALE Carotenoids are polyene isoprenoids with an important role in photosynthesis and photoprotection. Their characterization in biological matrices is a crucial subject for biochemical research. In this work we report the full fragmentation of 16 polyenes (carotenes and xanthophylls) by electrospray ionization tandem mass spectrometry (ESI-CID-MS/MS) and nanospray tandem mass spectrometry (nanoESI-CID-MS/MS). METHODS Analyses were carried out on a quadrupole time-of-flight (QTOF) mass spectrometer coupled with a nanoESI source and on a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer with an ESI source. The formulae of the product ions were determined by accurate-mass measurements. RESULTS It is demonstrated that the fragmentation routes observed for the protonated carotenoids derive essentially from charge-remote fragmentations and pericyclic rearrangements, such as electrocyclic and retro-ene eliminations (assisted or not by a sigmatropic hydrogen shift). All mechanisms are dependent on cis-trans isomerization through the formation of several conjugated polyene carbocation intermediates. Some specific ions for the carotenoid epoxides were justified through formation of cyclic oxonium ions. CONCLUSIONS Complete fragmentation pathways of protonated carotenoids by ESI- and nanoESI-CID-MS/MS provided structural information about functional groups, polyene chain and double bonds, and contribute to identification of carotenoids based on MS/MS fragmentation patterns. Copyright
Rapid Communications in Mass Spectrometry | 2016
Paul J. Gates; Norberto Peporine Lopes; Fausto Carnevale Neto; Thais Guaratini; Letícia V. Costa-Lotufo; Pio Colepicolo
RATIONALE Carotenoids are polyene isoprenoids with an important role in photosynthesis and photoprotection. Their characterization in biological matrices is a crucial subject for biochemical research. In this work we report the full fragmentation of 16 polyenes (carotenes and xanthophylls) by electrospray ionization tandem mass spectrometry (ESI-CID-MS/MS) and nanospray tandem mass spectrometry (nanoESI-CID-MS/MS). METHODS Analyses were carried out on a quadrupole time-of-flight (QTOF) mass spectrometer coupled with a nanoESI source and on a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer with an ESI source. The formulae of the product ions were determined by accurate-mass measurements. RESULTS It is demonstrated that the fragmentation routes observed for the protonated carotenoids derive essentially from charge-remote fragmentations and pericyclic rearrangements, such as electrocyclic and retro-ene eliminations (assisted or not by a sigmatropic hydrogen shift). All mechanisms are dependent on cis-trans isomerization through the formation of several conjugated polyene carbocation intermediates. Some specific ions for the carotenoid epoxides were justified through formation of cyclic oxonium ions. CONCLUSIONS Complete fragmentation pathways of protonated carotenoids by ESI- and nanoESI-CID-MS/MS provided structural information about functional groups, polyene chain and double bonds, and contribute to identification of carotenoids based on MS/MS fragmentation patterns. Copyright
Journal of Clinical Oncology | 2014
Haiwei Gu; Jin Dai; Fausto Carnevale Neto; Danijel Djukovic; Jiangjiang Zhu; Daniel Raftery
422 Background: While carcinogenesis of colorectal cancer (CRC) is a complex process involving genetic abnormalities, metabolomics, which aims to establish metabolic responses of living systems to external or internal perturbations, has great potential to develop a metabolite profile specific to CRC for both early detection and treatment monitoring purposes. In this pilot study, we examined the colon cancer-induced alterations of amino acids and their distribution in the three domains of free amino acids (FAAs), free amino acids and soluble peptide amino acids (FAASPAAs), and proteome amino acids (PAAs). Methods: 56 serum samples were collected from 28 colon cancer patients and 28 healthy controls. FAAs were extracted after protein precipitation. FAASPAAs and PAAs were obtained using traditional acid hydrolysis. We utilized LC-MS/MS to make the amino acid measurements, and performed penalized logistic regression analysis on the amino acid signals in the three domains, both individually and in combination....
Planta Medica | 2016
Gibson Gomes de Oliveira; Fausto Carnevale Neto; Daniel P. Demarque; José Antônio de Sousa Pereira-Junior; Rômulo César Sampaio Peixoto Filho; Sebastião J. de Melo; Jackson Roberto Guedes da Silva Almeida; João Luiz Callegari Lopes; Norberto Peporine Lopes