Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fausto Martelli is active.

Publication


Featured researches published by Fausto Martelli.


Nature | 2014

Metastable liquid-liquid transition in a molecular model of water

Jeremy C. Palmer; Fausto Martelli; Yang Liu; Roberto Car; Athanassios Z. Panagiotopoulos; Pablo G. Debenedetti

Liquid water’s isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid–liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water’s structure and behaviour in this regime, and have shown that some water models exhibit liquid–liquid transitions and others do not. However, recent work has argued that the liquid–liquid transition has been mistakenly interpreted, and is in fact a liquid–crystal transition in all atomistic models of water. Here we show, by studying the liquid–liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water’s coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid–liquid transition in the ST2 model of water, and point to the separation of time scales between crystallization and relaxation as being crucial for enabling it.


Inorganic Chemistry | 2013

Hydration properties and ionic radii of actinide(III) ions in aqueous solution

Paola D'Angelo; Fausto Martelli; Riccardo Spezia; Adriano Filipponi; Melissa A. Denecke

Ionic radii of actinide(III) cations (from U(III) to Cf(III)) in aqueous solution have been derived for the first time starting from accurate experimental determination of the ion-water distances obtained by combining extended X-ray absorption fine structure (EXAFS) results and molecular dynamics (MD) structural data. A strong analogy has been found between the lanthanide and actinide series concerning hydration properties. The existence of a contraction of the An-O distance along the series has been highlighted, while no decrease of the hydration number is evident up to Cf(III).


Molecular Physics | 2015

Local structure analysis in ab initio liquid water

Biswajit Santra; Robert A. DiStasio; Fausto Martelli; Roberto Car

Within the framework of density functional theory, the inclusion of exact exchange and non-local van der Waals/dispersion (vdW) interactions is crucial for predicting a microscopic structure of ambient liquid water that quantitatively agrees with experiment. In this work, we have used the local structure index (LSI) order parameter to analyse the local structure in such highly accurate ab initio liquid water. At ambient conditions, the LSI probability distribution, P(I ), was unimodal with most water molecules characterised by more disordered high-density-like local environments. With thermal excitations removed, the resultant bimodal P(I ) in the inherent potential energy surface (IPES) exhibited a 3:1 ratio between high-density- and low-density-like molecules, with the latter forming small connected clusters amid the predominant population. By considering the spatial correlations and hydrogen bond network topologies among water molecules with the same LSI identities, we demonstrate that the signatures of the experimentally observed low- and high-density amorphous phases of ice are present in the IPES of ambient liquid water. Analysis of the LSI autocorrelation function uncovered a persistence time of ∼ 4 ps – a finding consistent with the fact that natural thermal fluctuations are responsible for transitions between these distinct yet transient local aqueous environments in ambient liquid water.


Journal of Chemical Physics | 2011

Polarizable interaction potential for molecular dynamics simulations of actinoids(III) in liquid water.

Magali Duvail; Fausto Martelli; Pierre Vitorge; Riccardo Spezia

In this work, we have developed a polarizable classical interaction potential to study actinoids(III) in liquid water. This potential has the same analytical form as was recently used for lanthanoid(III) hydration [M. Duvail, P. Vitorge, and R. Spezia, J. Chem. Phys. 130, 104501 (2009)]. The hydration structure obtained with this potential is in good agreement with the experimentally measured ion-water distances and coordination numbers for the first half of the actinoid series. In particular, the almost linearly decreasing water-ion distance found experimentally is replicated within the calculations, in agreement with the actinoid contraction behavior. We also studied the hydration of the last part of the series, for which no structural experimental data are available, which allows us to provide some predictive insights on these ions. In particular we found that the ion-water distance decreases almost linearly across the series with a smooth decrease of coordination number from nine to eight at the end.


Physical Chemistry Chemical Physics | 2012

Electronic structure and bonding of lanthanoid(III) carbonates

Yannick Jeanvoine; Pere Miró; Fausto Martelli; Christopher J. Cramer; Riccardo Spezia

Quantum chemical calculations were employed to elucidate the structural and bonding properties of La(III) and Lu(III) carbonates. These elements are found at the beginning and end of the lanthanoid series, respectively, and we investigate two possible metal-carbonate stoichiometries (tri- and tetracarbonates) considering all possible carbonate binding motifs, i.e., combinations of mono- and bidentate coordination. In the gas phase, the most stable tricarbonate complexes coordinate all carbonates in a bidentate fashion, while the most stable tetracarbonate complexes incorporate entirely monodentate carbonate ligands. When continuum aqueous solvation effects are included, structures having fully bidentate coordination are the most favorable in each instance. Investigation of the electronic structures of these species reveals the metal-ligand interactions to be essentially devoid of covalent character.


Physical Chemistry Chemical Physics | 2014

Hydration properties of lanthanoid(III) carbonate complexes in liquid water determined by polarizable molecular dynamics simulations.

Fausto Martelli; Yannick Jeanvoine; Thomas Vercouter; César Beuchat; Rodolphe Vuilleumier; Riccardo Spezia

In this work we have studied the structure and dynamics of complexes formed by three and four carbonates and a central lanthanoid(III) ion in liquid water by means of polarizable molecular dynamics simulations. With this aim we have developed a force field employing an extrapolation procedure that was previously developed for lanthanoid(III) aqua ions and then we have validated it against DFT-based data. In this way we were able to shed light on properties of the whole series, finding some similarities and differences across the series, and to help in interpreting experiments on those systems. We found that the bi-dentate tri-carbonate complexes are the most stable for all the atoms, but a variation of the number of water molecules in the first ion shell, and the associated exchange dynamics, is observed from lighter to heavier elements. On the other hand, for four-carbonate systems only one water molecule is observed in the first shell, with 10-20% probability, for La(III) and Ce(III), while for the rest of the series it seems impossible for a water molecule to enter the first ion shell in the presence of such an excess of carbonate ligands. Finally, the good performance of our extrapolation procedure, based on ionic radii, makes us confident in extending such approaches to study the structure and dynamics of other systems in solution containing Ln(III) and An(III) ions. This parametrization method results particularly useful since it does not need expensive quantum chemistry calculations for all the atoms in the series.


Pure and Applied Chemistry | 2012

Lanthanoids(III) and actinoids(III) in water: Diffusion coefficients and hydration enthalpies from polarizable molecular dynamics simulations

Fausto Martelli; Sacha Abadie; Jean-Pierre Simonin; Rodolphe Vuilleumier; Riccardo Spezia

By using polarizable molecular dynamics (MD) simulations of lanthanoid(III) and actinoid(III) ions in water, we obtained ionic diffusion coefficients and hydration enthalpies for both series. These values are in good agreement with experiments. Simulations thus allow us to relate them to microscopic structure. In particular, across the series the diffusion coefficients decrease, reflecting the increase of ion–water interaction. Hydration enthalpies also show that interactions increase from light to heavy ions in agreement with experiment. The apparent contradictory result of the decrease of the diffusion coefficient with decreasing ionic radius is tentatively explained in terms of dielectric friction predominance on Stokes’ diffusive regime.


Journal of Chemical Physics | 2012

Varying the charge of small cations in liquid water: Structural, transport, and thermodynamical properties

Fausto Martelli; Rodolphe Vuilleumier; Jean-Pierre Simonin; Riccardo Spezia

In this work, we show how increasing the charge of small cations affects the structural, thermodynamical, and dynamical properties of these ions in liquid water. We have studied the case of lanthanoid and actinoid ions, for which we have recently developed accurate polarizable force fields, and the ionic radius is in the 0.995-1.250 Å range, and explored the valency range from 0 to 4+. We found that the ion charge strongly structures the neighboring water molecules and that, in this range of charges, the hydration enthalpies exhibit a quadratic dependence with respect to the charge, in line with the Born model. The diffusion process follows two main regimes: a hydrodynamical regime for neutral or low charges, and a dielectric friction regime for high charges in which the contraction of the ionic radius along the series of elements causes a decrease of the diffusion coefficient. This latter behavior can be qualitatively described by theoretical models, such as the Zwanzig and the solvated ion models. However, these models need be modified in order to obtain agreement with the observed behavior in the full charge range. We have thus modified the solvated ion model by introducing a dependence of the bare ion radius as a function of the ionic charge. Besides agreement between theory and simulation this modification allows one to obtain an empirical unified model. Thus, by analyzing the contributions to the drag coefficient from the viscous and the dielectric terms, we are able to explain the transition from a regime in which the effect of viscosity dominates to one in which dielectric friction governs the motion of ions with radii of ca. 1 Å.


Molecular Physics | 2016

Density and bond-orientational relaxations in supercooled water

Jeremy C. Palmer; Rakesh S. Singh; Renjie Chen; Fausto Martelli; Pablo G. Debenedetti

ABSTRACT Recent computational studies have reported evidence of a metastable liquid–liquid phase transition (LLPT) in molecular models of water under deeply supercooled conditions. A competing hypothesis suggests, however, that non-equilibrium artefacts associated with coarsening of the stable crystal phase have been mistaken for an LLPT in these models. Such artefacts are posited to arise due to a separation of time scales in which density fluctuations in the supercooled liquid relax orders of magnitude faster than those associated with bond-orientational order. Here, we use molecular simulation to investigate the relaxation of density and bond-orientational fluctuations in three molecular models of water (ST2, TIP5P and TIP4P/2005) in the vicinity of their reported LLPT. For each model, we find that density is the slowly relaxing variable under such conditions. We also observe similar behaviour in the coarse-grained mW model of water. Our findings, therefore, challenge the key physical assumption underlying the competing hypothesis.


Nanoscale | 2018

Root-Growth of Boron Nitride Nanotubes: Experiments and Ab Initio Simulations

Biswajit Santra; Hsin Yu Ko; Yao-Wen Yeh; Fausto Martelli; Igor D. Kaganovich; Yevgeny Raitses; Car Roberto

We have synthesized boron nitride nanotubes (BNNTs) in an arc in the presence of boron and nitrogen species. We find that BNNTs are often attached to large nanoparticles, suggesting that root-growth is a likely mechanism for their formation. Moreover, the tube-end nanoparticles are composed of boron, without transition metals, indicating that transition metals are not necessary for the arc synthesis of BNNTs. To gain further insight into this process we have studied key mechanisms for root growth of BNNTs on the surface of a liquid boron droplet by ab initio molecular dynamics simulations. We find that nitrogen atoms reside predominantly on the droplet surface where they organize to form boron nitride islands below 2400 K. To minimize contact with the liquid particle underneath, the islands assume non-planar configurations that are likely precursors for the thermal nucleation of cap structures. Once formed, the caps are stable and can easily incorporate nitrogen and boron atoms at their base, resulting in further growth. Our simulations support the root-growth mechanism of BNNTs and provide comprehensive evidence of the active role played by liquid boron.

Collaboration


Dive into the Fausto Martelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge