Fay-Wei Li
Boyce Thompson Institute for Plant Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fay-Wei Li.
Journal of Systematics and Evolution | 2016
Eric Schuettpelz; Harald Schneider; Alan R. Smith; Peter Hovenkamp; Jefferson Prado; Germinal Rouhan; Alexandre Salino; Michael Sundue; Thaís Elias Almeida; Barbara S. Parris; Emily B. Sessa; Ashley R. Field; André Luís de Gasper; Carl J. Rothfels; Michael D. Windham; Marcus Lehnert; Benjamin Dauphin; Atsushi Ebihara; Samuli Lehtonen; Pedro B. Schwartsburd; Jordan Metzgar; Li-Bing Zhang; Li-Yaung Kuo; Patrick J. Brownsey; Masahiro Kato; Marcelo Daniel Arana; Francine Costa Assis; Michael S. Barker; David S. Barrington; Ho-Ming Chang
Phylogeny has long informed pteridophyte classification. As our ability to infer evolutionary trees has improved, classifications aimed at recognizing natural groups have become increasingly predictive and stable. Here, we provide a modern, comprehensive classification for lycophytes and ferns, down to the genus level, utilizing a community‐based approach. We use monophyly as the primary criterion for the recognition of taxa, but also aim to preserve existing taxa and circumscriptions that are both widely accepted and consistent with our understanding of pteridophyte phylogeny. In total, this classification treats an estimated 11 916 species in 337 genera, 51 families, 14 orders, and two classes. This classification is not intended as the final word on lycophyte and fern taxonomy, but rather a summary statement of current hypotheses, derived from the best available data and shaped by those most familiar with the plants in question. We hope that it will serve as a resource for those wanting references to the recent literature on pteridophyte phylogeny and classification, a framework for guiding future investigations, and a stimulus to further discourse.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Fay-Wei Li; Juan Carlos Villarreal; Steven Kelly; Carl J. Rothfels; Michael Melkonian; Eftychios Frangedakis; Markus Ruhsam; Erin M. Sigel; Joshua P. Der; Jarmila Pittermann; Dylan O. Burge; Lisa Pokorny; Anders Larsson; Tao Chen; Stina Weststrand; Philip J. Thomas; Eric J. Carpenter; Yong Zhang; Zhijian Tian; Li Chen; Zhixiang Yan; Ying Zhu; Xiao Sun; Jun Wang; Dennis W. Stevenson; Barbara Crandall-Stotler; A. Jonathan Shaw; Michael K. Deyholos; Douglas E. Soltis; Sean W. Graham
Significance Despite being one of the oldest groups of land plants, the majority of living ferns resulted from a relatively recent diversification following the rise of angiosperms. To exploit fully the new habitats created by angiosperm-dominated ecosystems, ferns had to evolve novel adaptive strategies to cope with the low-light conditions exerted by the angiosperm canopy. Neochrome, an unconventional photoreceptor that allows ferns to “see the light” better, was likely part of the solution. Surprisingly, we discovered that fern neochrome was derived from a bryophyte lineage via horizontal gene transfer (HGT). This finding not only provides the first evidence that a plant-to-plant HGT can have a profound evolutionary impact but also has implications for the evolution of photosensory systems in plants. Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor—neochrome—that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery. We present evidence for neochrome in hornworts (a bryophyte lineage) and demonstrate that ferns acquired neochrome from hornworts via horizontal gene transfer (HGT). Fern neochromes are nested within hornwort neochromes in our large-scale phylogenetic reconstructions of phototropin and phytochrome gene families. Divergence date estimates further support the HGT hypothesis, with fern and hornwort neochromes diverging 179 Mya, long after the split between the two plant lineages (at least 400 Mya). By analyzing the draft genome of the hornwort Anthoceros punctatus, we also discovered a previously unidentified phototropin gene that likely represents the ancestral lineage of the neochrome phototropin module. Thus, a neochrome originating in hornworts was transferred horizontally to ferns, where it may have played a significant role in the diversification of modern ferns.
Molecular Phylogenetics and Evolution | 2011
Li-Yaung Kuo; Fay-Wei Li; Wen-Liang Chiou; Chun-Neng Wang
MatK, the only maturase gene in the land plant plastid genome, is a very popular phylogenetic marker that has been extensively applied in reconstructing angiosperm phylogeny. However, the use of matK in fern phylogeny is largely unknown, due to difficulties with amplification: ferns have lost the flanking trnK exons, typically the region used for designing stable priming sites. We developed primers that are either universal or lineage-specific that successfully amplify matK across all fern families. To evaluate whether matK is as powerful a phylogenetic marker in ferns as in angiosperms, we compared its sequence characteristics and phylogenetic performance to those of rbcL and atpA. Among these three genes, matK has the highest variability and substitution evenness, yet shows the least homoplasy. Most importantly, applying matK in fern phylogenetics better resolved relationships among families, especially within eupolypods I and II. Here we demonstrate the power of matK for fern phylogenetic reconstruction, as well as provide primers and extensive sequence data that will greatly facilitate future evolutionary studies of ferns.
American Journal of Botany | 2015
Carl J. Rothfels; Fay-Wei Li; Erin M. Sigel; Layne Huiet; Anders Larsson; Dylan O. Burge; Markus Ruhsam; Michael K. Deyholos; Douglas E. Soltis; C. Neal Stewart; Shane W. Shaw; Lisa Pokorny; Tao Chen; Claude W. dePamphilis; Lisa DeGironimo; Li Chen; Xiaofeng Wei; Xiao Sun; Petra Korall; Dennis W. Stevenson; Sean W. Graham; Gane K-S. Wong; Kathleen M. Pryer
UNLABELLED • PREMISE OF THE STUDY Understanding fern (monilophyte) phylogeny and its evolutionary timescale is critical for broad investigations of the evolution of land plants, and for providing the point of comparison necessary for studying the evolution of the fern sister group, seed plants. Molecular phylogenetic investigations have revolutionized our understanding of fern phylogeny, however, to date, these studies have relied almost exclusively on plastid data.• METHODS Here we take a curated phylogenomics approach to infer the first broad fern phylogeny from multiple nuclear loci, by combining broad taxon sampling (73 ferns and 12 outgroup species) with focused character sampling (25 loci comprising 35877 bp), along with rigorous alignment, orthology inference and model selection.• KEY RESULTS Our phylogeny corroborates some earlier inferences and provides novel insights; in particular, we find strong support for Equisetales as sister to the rest of ferns, Marattiales as sister to leptosporangiate ferns, and Dennstaedtiaceae as sister to the eupolypods. Our divergence-time analyses reveal that divergences among the extant fern orders all occurred prior to ∼200 MYA. Finally, our species-tree inferences are congruent with analyses of concatenated data, but generally with lower support. Those cases where species-tree support values are higher than expected involve relationships that have been supported by smaller plastid datasets, suggesting that deep coalescence may be reducing support from the concatenated nuclear data.• CONCLUSIONS Our study demonstrates the utility of a curated phylogenomics approach to inferring fern phylogeny, and highlights the need to consider underlying data characteristics, along with data quantity, in phylogenetic studies.
Genome Biology and Evolution | 2015
Paul G. Wolf; Emily B. Sessa; Daniel Blaine Marchant; Fay-Wei Li; Carl J. Rothfels; Erin M. Sigel; Matthew A. Gitzendanner; Clayton J. Visger; Jo Ann Banks; Douglas E. Soltis; Pamela S. Soltis; Kathleen M. Pryer; Joshua P. Der
Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants.
PLOS ONE | 2011
Fay-Wei Li; Li-Yaung Kuo; Carl J. Rothfels; Atsushi Ebihara; Wen-Liang Chiou; Michael D. Windham; Kathleen M. Pryer
Background DNA barcoding will revolutionize our understanding of fern ecology, most especially because the accurate identification of the independent but cryptic gametophyte phase of the ferns life history—an endeavor previously impossible—will finally be feasible. In this study, we assess the discriminatory power of the core plant DNA barcode (rbcL and matK), as well as alternatively proposed fern barcodes (trnH-psbA and trnL-F), across all major fern lineages. We also present plastid barcode data for two genera in the hyperdiverse polypod clade—Deparia (Woodsiaceae) and the Cheilanthes marginata group (currently being segregated as a new genus of Pteridaceae)—to further evaluate the resolving power of these loci. Principal Findings Our results clearly demonstrate the value of matK data, previously unavailable in ferns because of difficulties in amplification due to a major rearrangement of the plastid genome. With its high sequence variation, matK complements rbcL to provide a two-locus barcode with strong resolving power. With sequence variation comparable to matK, trnL-F appears to be a suitable alternative barcode region in ferns, and perhaps should be added to the core barcode region if universal primer development for matK fails. In contrast, trnH-psbA shows dramatically reduced sequence variation for the majority of ferns. This is likely due to the translocation of this segment of the plastid genome into the inverted repeat regions, which are known to have a highly constrained substitution rate. Conclusions Our study provides the first endorsement of the two-locus barcode (rbcL+matK) in ferns, and favors trnL-F over trnH-psbA as a potential back-up locus. Future work should focus on gathering more fern matK sequence data to facilitate universal primer development.
Nature Communications | 2015
Fay-Wei Li; Michael Melkonian; Carl J. Rothfels; Juan Carlos Villarreal; Dennis W. Stevenson; Sean W. Graham; Gane Ka-Shu Wong; Kathleen M. Pryer; Sarah Mathews
Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives.
GigaScience | 2014
Emily B. Sessa; Jo Ann Banks; Michael S. Barker; Joshua P. Der; Aaron M. Duffy; Sean W. Graham; Mitsuyasu Hasebe; Jane A. Langdale; Fay-Wei Li; D. B. Marchant; Kathleen M. Pryer; Carl J. Rothfels; Stanley J. Roux; Mari L. Salmi; Erin M. Sigel; Douglas E. Soltis; Pamela S. Soltis; Dennis W. Stevenson; Paul G. Wolf
Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves.
PLOS ONE | 2013
Carl J. Rothfels; Anders Larsson; Fay-Wei Li; Erin M. Sigel; Layne Huiet; Dylan O. Burge; Markus Ruhsam; Sean W. Graham; Dennis W. Stevenson; Gane Ka-Shu Wong; Petra Korall; Kathleen M. Pryer
Background Molecular phylogenetic investigations have revolutionized our understanding of the evolutionary history of ferns—the second-most species-rich major group of vascular plants, and the sister clade to seed plants. The general absence of genomic resources available for this important group of plants, however, has resulted in the strong dependence of these studies on plastid data; nuclear or mitochondrial data have been rarely used. In this study, we utilize transcriptome data to design primers for nuclear markers for use in studies of fern evolutionary biology, and demonstrate the utility of these markers across the largest order of ferns, the Polypodiales. Principal Findings We present 20 novel single-copy nuclear regions, across 10 distinct protein-coding genes: ApPEFP_C, cryptochrome 2, cryptochrome 4, DET1, gapCpSh, IBR3, pgiC, SQD1, TPLATE, and transducin. These loci, individually and in combination, show strong resolving power across the Polypodiales phylogeny, and are readily amplified and sequenced from our genomic DNA test set (from 15 diploid Polypodiales species). For each region, we also present transcriptome alignments of the focal locus and related paralogs—curated broadly across ferns—that will allow researchers to develop their own primer sets for fern taxa outside of the Polypodiales. Analyses of sequence data generated from our genomic DNA test set reveal strong effects of partitioning schemes on support levels and, to a much lesser extent, on topology. A model partitioned by codon position is strongly favored, and analyses of the combined data yield a Polypodiales phylogeny that is well-supported and consistent with earlier studies of this group. Conclusions The 20 single-copy regions presented here more than triple the single-copy nuclear regions available for use in ferns. They provide a much-needed opportunity to assess plastid-derived hypotheses of relationships within the ferns, and increase our capacity to explore aspects of fern evolution previously unavailable to scientific investigation.
Systematic Botany | 2012
Fay-Wei Li; Kathleen M. Pryer; Michael D. Windham
Abstract Ongoing molecular phylogenetic studies of cheilanthoid ferns confirm that the genus Cheilanthes (Pteridaceae) is polyphyletic. A monophyletic group of species within the hemionitid clade informally called the “C. marginata group” is here shown to be distinct from its closest relatives (the genus Aspidotis) and phylogenetically distant from the type species of Cheilanthes. This group is here segregated from Cheilanthes as the newly described genus, Gaga . In this study, we use molecular data from four DNA regions (plastid: matK, rbcL, trnG-R; and nuclear: gapCp) together with spore data to circumscribe the morphological and geographical boundaries of the new genus and investigate reticulate evolution within the group. Gaga is distinguished from Aspidotis by its rounded to attenuate (vs. mucronate) segment apices, minutely bullate margins of mature leaves (vs. smooth at 40 ×), and less prominently lustrous and striate adaxial blade surfaces. The new genus is distinguished from Cheilanthes s. s. by its strongly differentiated, inframarginal pseudoindusia, the production of 64 small or 32 large spores (vs. 32 small or 16 large) per sporangium, and usually glabrous leaf blades. A total of nineteen species are recognized within Gaga; seventeen new combinations are made, and two new species, Gaga germanotta and Gaga monstraparva , are described.