Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fayçal Boussouar is active.

Publication


Featured researches published by Fayçal Boussouar.


Nature | 2005

The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism

Seung Hoi Koo; Lawrence Flechner; Ling Qi; Xinmin Zhang; Robert A. Screaton; Shawn Jeffries; Susan Hedrick; Wu Xu; Fayçal Boussouar; Paul K. Brindle; Hiroshi Takemori; Marc Montminy

Glucose homeostasis is regulated systemically by hormones such as insulin and glucagon, and at the cellular level by energy status. Glucagon enhances glucose output from the liver during fasting by stimulating the transcription of gluconeogenic genes via the cyclic AMP-inducible factor CREB (CRE binding protein). When cellular ATP levels are low, however, the energy-sensing kinase AMPK inhibits hepatic gluconeogenesis through an unknown mechanism. Here we show that hormonal and energy-sensing pathways converge on the coactivator TORC2 (transducer of regulated CREB activity 2) to modulate glucose output. Sequestered in the cytoplasm under feeding conditions, TORC2 is dephosphorylated and transported to the nucleus where it enhances CREB-dependent transcription in response to fasting stimuli. Conversely, signals that activate AMPK attenuate the gluconeogenic programme by promoting TORC2 phosphorylation and blocking its nuclear accumulation. Individuals with type 2 diabetes often exhibit fasting hyperglycaemia due to elevated gluconeogenesis; compounds that enhance TORC2 phosphorylation may offer therapeutic benefits in this setting.


Nature | 2002

A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis

Lawryn H. Kasper; Fayçal Boussouar; Paul A. Ney; Carl W. Jackson; Jerold E. Rehg; Jan M. van Deursen; Paul K. Brindle

The coactivators CBP (Cre-element binding protein (CREB)-binding protein) and its paralogue p300 are thought to supply adaptor molecule and protein acetyltransferase functions to many transcription factors that regulate gene expression. Normal development requires CBP and p300, and mutations in these genes are found in haematopoietic and epithelial tumours. It is unclear, however, which functions of CBP and p300 are essential in vivo. Here we show that the protein-binding KIX domains of CBP and p300 have nonredundant functions in mice. In mice homozygous for point mutations in the KIX domain of p300 designed to disrupt the binding surface for the transcription factors c-Myb and CREB, multilineage defects occur in haematopoiesis, including anaemia, B-cell deficiency, thymic hypoplasia, megakaryocytosis and thrombocytosis. By contrast, age-matched mice homozygous for identical mutations in the KIX domain of CBP are essentially normal. There is a synergistic genetic interaction between mutations in c-Myb and mutations in the KIX domain of p300, which suggests that the binding of c-Myb to this domain of p300 is crucial for the development and function of megakaryocytes. Thus, conserved domains in two highly related coactivators have contrasting roles in haematopoiesis.


Trends in Endocrinology and Metabolism | 2004

Lactate and energy metabolism in male germ cells

Fayçal Boussouar; Mohamed Benahmed

Various alterations in germ cell proliferation/differentiation, survival and energy metabolism are potentially involved in hypospermatogenesis leading to male infertility. Several reviews have been devoted to the different processes whose alteration might underlie hypospermatogenesis, except for energy metabolism in the testis. Energy metabolism in the testis exhibits some specificity in that lactate is the central energy metabolite used by germ cells. This metabolite is produced by somatic Sertoli cells, transported and used by germ cells in the context of an active cooperation under the control of the endocrine system and local cytokines. In this review, we present and discuss relevant published data on energy metabolism in male germ cells with a specific emphasis on lactate.


Molecular and Cellular Biology | 2006

Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development.

Lawryn H. Kasper; Tomofusa Fukuyama; Michelle Biesen; Fayçal Boussouar; Caili Tong; Antoine de Pauw; Peter J. Murray; Jan M. van Deursen; Paul K. Brindle

ABSTRACT The global transcriptional coactivators CREB-binding protein (CBP) and the closely related p300 interact with over 312 proteins, making them among the most heavily connected hubs in the known mammalian protein-protein interactome. It is largely uncertain, however, if these interactions are important in specific cell lineages of adult animals, as homozygous null mutations in either CBP or p300 result in early embryonic lethality in mice. Here we describe a Cre/LoxP conditional p300 null allele (p300 flox ) that allows for the temporal and tissue-specific inactivation of p300. We used mice carrying p300 flox and a CBP conditional knockout allele (CBP flox ) in conjunction with an Lck-Cre transgene to delete CBP and p300 starting at the CD4− CD8− double-negative thymocyte stage of T-cell development. Loss of either p300 or CBP led to a decrease in CD4+ CD8+ double-positive thymocytes, but an increase in the percentage of CD8+ single-positive thymocytes seen in CBP mutant mice was not observed in p300 mutants. T cells completely lacking both CBP and p300 did not develop normally and were nonexistent or very rare in the periphery, however. T cells lacking CBP or p300 had reduced tumor necrosis factor alpha gene expression in response to phorbol ester and ionophore, while signal-responsive gene expression in CBP- or p300-deficient macrophages was largely intact. Thus, CBP and p300 each supply a surprising degree of redundant coactivation capacity in T cells and macrophages, although each gene has also unique properties in thymocyte development.


FEBS Journal | 2010

From meiosis to postmeiotic events: The secrets of histone disappearance

Jonathan Gaucher; Nicolas Reynoird; Emilie Montellier; Fayçal Boussouar; Sophie Rousseaux; Saadi Khochbin

One of the most obscure phenomena in modern biology is the near genome‐wide displacement of histones that occurs during the postmeiotic phases of spermatogenesis in many species. Here we review the literature to show that, during spermatogenic differentiation, three major molecular mechanisms come together to ‘prepare’ the nucleosomes for facilitated disassembly and histone removal.


The EMBO Journal | 2012

Bromodomain‐dependent stage‐specific male genome programming by Brdt

Jonathan Gaucher; Fayçal Boussouar; Emilie Montellier; Sandrine Curtet; Thierry Buchou; Sarah Bertrand; Patrick Héry; Sylvie Jounier; Arnaud Depaux; Anne-Laure Vitte; Philippe Guardiola; Karin Pernet; Alexandra Debernardi; Fabrice Lopez; Hélène Holota; Jean Imbert; Debra J. Wolgemuth; Matthieu Gérard; Sophie Rousseaux; Saadi Khochbin

Male germ cell differentiation is a highly regulated multistep process initiated by the commitment of progenitor cells into meiosis and characterized by major chromatin reorganizations in haploid spermatids. We report here that a single member of the double bromodomain BET factors, Brdt, is a master regulator of both meiotic divisions and post‐meiotic genome repackaging. Upon its activation at the onset of meiosis, Brdt drives and determines the developmental timing of a testis‐specific gene expression program. In meiotic and post‐meiotic cells, Brdt initiates a genuine histone acetylation‐guided programming of the genome by activating essential genes and repressing a ‘progenitor cells’ gene expression program. At post‐meiotic stages, a global chromatin hyperacetylation gives the signal for Brdts first bromodomain to direct the genome‐wide replacement of histones by transition proteins. Brdt is therefore a unique and essential regulator of male germ cell differentiation, which, by using various domains in a developmentally controlled manner, first drives a specific spermatogenic gene expression program, and later controls the tight packaging of the male genome.


The EMBO Journal | 2005

Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression

Lawryn H. Kasper; Fayçal Boussouar; Kelli L. Boyd; Wu Xu; Michelle Biesen; Jerold E. Rehg; Troy A. Baudino; John L. Cleveland; Paul K. Brindle

The C‐terminal activation domain (C‐TAD) of the hypoxia‐inducible transcription factors HIF‐1α and HIF‐2α binds the CH1 domains of the related transcriptional coactivators CREB‐binding protein (CBP) and p300, an oxygen‐regulated interaction thought to be highly essential for hypoxia‐responsive transcription. The role of the CH1 domain in vivo is unknown, however. We created mutant mice bearing deletions in the CH1 domains (ΔCH1) of CBP and p300 that abrogate their interactions with the C‐TAD, revealing that the CH1 domains of CBP and p300 are genetically non‐redundant and indispensable for C‐TAD transactivation function. Surprisingly, the CH1 domain was only required for an average of ∼35–50% of global HIF‐1‐responsive gene expression, whereas another HIF transactivation mechanism that is sensitive to the histone deacetylase inhibitor trichostatin A (TSAS) accounts for ∼70%. Both pathways are required for greater than 90% of the response for some target genes. Our findings suggest that a novel functional interaction between the protein acetylases CBP and p300, and deacetylases, is essential for nearly all HIF‐responsive transcription.


Cancer Cell | 2004

Loss of CBP causes T cell lymphomagenesis in synergy with p27Kip1 insufficiency

Ningling Kang-Decker; Caili Tong; Fayçal Boussouar; Darren J. Baker; Wu Xu; Alexey A. Leontovich; William R. Taylor; Paul K. Brindle; Jan M. van Deursen

CBP can function as a tumor suppressor, but the mechanisms that govern oncogenesis in its absence are unknown. Here we show that CBP inactivation in mouse thymocytes leads to lymphoma. Although CBP has been implicated in the transactivation functions of p53, development of these tumors does not seem to involve loss of p53 activity. CBP-null tumors show reduced levels of p27Kip1 and increased levels of cyclin E and Skp2, two oncoproteins that can promote p27Kip1 proteolysis. Reduction of p27Kip1 by introduction of a p27Kip1-null allele into CBP knockout mice accelerates lymphomagenesis and seems to obviate the requirement for Skp2 and cyclin E upregulation. These data suggest that CBP loss mediates lymphomagenesis in cooperation with a mechanism that reduces p27Kip1 abundance.


Nature | 2016

Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells

Maud de Dieuleveult; Kuangyu Yen; Isabelle Hmitou; Arnaud Depaux; Fayçal Boussouar; Daria Bou Dargham; Sylvie Jounier; Hélène Humbertclaude; Florence Ribierre; Céline Baulard; Nina Farrell; Bongsoo Park; Céline Keime; Lucie Carrière; Soizick Berlivet; Marta Gut; Ivo Gut; Michel Werner; Jean-François Deleuze; Robert Olaso; Jean Christophe Aude; Sophie Chantalat; B. Franklin Pugh; Matthieu Gérard

ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers target specific nucleosomes to regulate transcription is unclear. Here we present genome-wide remodeller–nucleosome interaction profiles for the chromatin remodellers Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank micrococcal nuclease (MNase)-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites are nevertheless bound by non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and marked by H3K4me3 and H3K27ac modifications. RNA polymerase II therefore navigates hundreds of base pairs of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3′ end of the NFR. Transcriptome analysis after remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers have either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs.


Molecular and Cellular Biology | 2009

Histone acetyltransferase CBP is vital to demarcate conventional and innate CD8+ T-cell development.

Tomofusa Fukuyama; Lawryn H. Kasper; Fayçal Boussouar; Trushar Jeevan; Jan M. van Deursen; Paul K. Brindle

ABSTRACT Defining the chromatin modifications and transcriptional mechanisms that direct the development of different T-cell lineages is a major challenge in immunology. The transcriptional coactivators CREB binding protein (CBP) and the closely related p300, which comprise the KAT3 family of histone/protein lysine acetyltransferases, interact with over 50 T-lymphocyte-essential transcriptional regulators. We show here that CBP, but not p300, modulates the thymic development of conventional adaptive T cells versus those having unconventional innate functions. Conditional inactivation of CBP in the thymus yielded CD8 single-positive (SP) thymocytes with an effector-, memory-, or innate-like T-cell phenotype. In this regard, CD8 SP thymocytes in CBP mutant mice were phenotypically similar to those reported for Itk and Rlk protein tyrosine kinase mutants, including the increased expression of the T-cell master regulatory transcription factor eomesodermin (Eomes) and the interleukin-2 and -15 receptor beta chain (CD122) and an enhanced ability to rapidly produce gamma interferon. CBP was required for the expression of the Itk-dependent genes Egr2, Egr3, and Il2, suggesting that CBP helps mediate Itk-responsive transcription. CBP therefore defines a nuclear component of the signaling pathways that demarcate the development of innate and adaptive naïve CD8+ T cells in the thymus.

Collaboration


Dive into the Fayçal Boussouar's collaboration.

Top Co-Authors

Avatar

Paul K. Brindle

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Lawryn H. Kasper

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge