Fayroz A. Sabah
Universiti Sains Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fayroz A. Sabah.
INTERNATIONAL CONFERENCE ON NANO-ELECTRONIC TECHNOLOGY DEVICES AND MATERIALS 2015 (IC-NET 2015) | 2016
Fayroz A. Sabah; Naser M. Ahmed; Z. Hassan; Hiba S. Rasheed; Shrook A. Azzez; Nabeel Z. Al-Hazim
The copper sulphide (CuS) thin films were grown with good adhesion by spray pyrolysis deposition (SPD) on Ti, ITO and glass substrates at 200 °C. The distance between nozzle and substrate is 30 cm. The composition was prepared by mixing copper chloride CuCl2.2H2O as a source of Cu2+ and sodium thiosulfate Na2S2O3.5H2O as a source of and S2−. Two concentrations (0.2 and 0.4 M) were used for each CuCl2 and Na2S2O3 to be prepared and then sprayed (20 ml). The process was started by spraying the solution for 3 seconds and after 10 seconds the cycle was repeated until the solution was sprayed completely on the hot substrates. The structural characteristics were studied using X-ray diffraction; they showed covellite CuS hexagonal crystal structure for 0.2 M concentration, and covellite CuS hexagonal crystal structure with two small peaks of chalcocite Cu2S hexagonal crystal structure for 0.4 M concentration. Also the surface and electrical characteristics were investigated using Field Emission Scanning Electron...
Journal of Physics: Conference Series | 2018
Fayroz A. Sabah; Naser M. Ahmed; Z. Hassan
Copper sulphide (CuS) is one of the most important semiconductor materials used in many applications for its semiconducting characteristics. CuS nanoscale thin films were deposited on various substrates using various methods of deposition; recently CuS thin films were used as extended gate field effect transistor (EGFET) and implemented as a pH sensor. In this work, CuS thin film was deposited on ZnO layer using spray pyrolysis deposition (SPD). CuS solution (0.4 M) was prepared from copper(II) chloride and sodium thiosulfate dissolved in deionised water. the precursors used to prepare CuS solution were copper chloride and sodium thiosulfate with 0.4 M concentration, and these precursors were solved using deionized water. The structural characteristics of this thin film show two phases for CuS; covellite and chalcocite with grain size of 31.2 nm. Nanoplate structure with a lot of aggregations was achieved from this deposition and it is confirmed by morphological examination, which estimates the roughness of the film to be 0.145 μm. CuS/ZnO thin film was used as EGFET and applied as pH sensor; the sensitivity and hysteresis were measured for this sensor to be 23.3 mV/pH and 17.5 mV, respectively.
Materials Science Forum | 2017
Fayroz A. Sabah; Naser M. Ahmed; Z. Hassan; Munirah Abdullah Almessiere
In this research work, copper sulphide was deposited on glass substrate using spray pyrolysis deposition. The precursors were dissolved in deionized water (DIW) and ethanol, mixed at a ratio of 7:3. The distance between nozzle and substrate was 30 cm and the substrate temperature was maintained at 200 °C. XRD spectra analysis showed four distinctive peaks of high intensity, which indicate pure CuS covellite phase with average crystallite size of 28.3 nm. FESEM characterization of the thin film structure showed a mixture of very small nanoplates and larger square-and triangular-shaped particles. The application of the film as pH sensor showed it has exceptional qualities that include sensitivity and linearity of 22.9 mV/pH and 93.8%, hysteresis of 23.75 mV, repeatability (C.V.) of 0.11% for pH7, stability and reliability (C.V.) of 0.13%, 0.12% and 0.08% for pH 4, 7 and 10, respectively. This research work confirms the feasibility of using CuS thin film as extended membrane in pH sensor and biosensor applications.
INTERNATIONAL CONFERENCE ON NANO-ELECTRONIC TECHNOLOGY DEVICES AND MATERIALS 2015 (IC-NET 2015) | 2016
Nabeel Z. Al-Hazeem; Naser M. Ahmed; M. Z. MatJafri; Fayroz A. Sabah; Hiba S. Rasheed
In this work, we fabricated nanorods by applying an electric potential on poly (ethylene oxide) (PEO) and polyaniline (PANI) as a polymeric solution by electrospinning method. Testing was conducted on the samples by field emission scanning Electron microscope (FE-SEM), X-ray diffraction (XRD) and Photoluminescence. And the results showed the emergence of nanorods in the sample within glass substrate. Diameters of nanorods have ranged between (52.78-122.40)nm And a length of between (1.15 – 1.32)μm. The emergence of so the results are for the first time, never before was the fabrication of nanorods for polymers using the same method used in this research.
INTERNATIONAL CONFERENCE ON NANO-ELECTRONIC TECHNOLOGY DEVICES AND MATERIALS 2015 (IC-NET 2015) | 2016
Shrook A. Azzez; Z. Hassan; J.J. Hassan; M. Alimanesh; Hiba S. Rasheed; Fayroz A. Sabah; Sinan A. Abdulateef
Highly oriented zinc oxide nanorod were successfully grown on seeded p-type silicone substrate by hydrothermal methode. The morphology and the crystallinty of ZnO c-axis (002) arrays were systematically studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) methods. The effect of seed layer pre-annealing on nanorods properties was explained according to the nucleation site of ZnO nanoparticles on silicon substrate. In addition, the variation of the equal molarity of zinc nitrate hexahydrate and hexamine concentrations in the reaction vessel play a crucial role related to the ZnO nanorods.
INTERNATIONAL CONFERENCE ON NANO-ELECTRONIC TECHNOLOGY DEVICES AND MATERIALS 2015 (IC-NET 2015) | 2016
Hiba S. Rasheed; Z. Hassan; Naser M. Ahmed; Fayroz A. Sabah; Shrook A. Azzez; Nabeel Z. Al-Hazim
A series of ZnO/Cu/ZnO multilayer films has been fabricated from zinc and copper metallic targets by simultaneous RF and DC magnetron sputtering. The influences of the ZnO and Cu layer thicknesses, and Ar flow rate on the optical, electrical and structural properties of the films were investigated. The optical and electrical properties of the multilayers were studied by optical spectrometry and four point probe measurements, respectively. The thickness of the ZnO layers were varied between 20 and 60 nm and the Cu layers were between 5 and 15 nm, the optimum thin film structures were deposited under 12 sccm Ar flow rate. Low sheet resistance and high transmittance were obtained when the film was prepared using thickness of ZnO (60 nm)/Cu (15 nm)/ZnO (60 nm).
Sensors and Actuators A-physical | 2016
Fayroz A. Sabah; Naser M. Ahmed; Z. Hassan; Hiba S. Rasheed
Materials Science in Semiconductor Processing | 2017
Fayroz A. Sabah; Naser M. Ahmed; Z. Hassan; Munirah Abdullah Almessiere
Journal of Electronic Materials | 2017
Fayroz A. Sabah; Naser M. Ahmed; Z. Hassan
Procedia Chemistry | 2016
Fayroz A. Sabah; Naser M. Ahmed; Z. Hassan; Hiba S. Rasheed