Fazal Reza
Universiti Sains Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fazal Reza.
Dental Traumatology | 2014
Fazal Reza; Hiroshi Churei; Hidekazu Takahashi; Naohiko Iwasaki; Toshiaki Ueno
PURPOSE Several methods have been used to measure the impact force absorption capacities of mouthguard materials; however, the relationships among these measurement systems have not been clearly determined. The purpose of the present study was to evaluate the impact force-absorbing capability of materials using a drop-ball system with film sensors and load cells to clarify the relationship between these two sensor systems. MATERIALS AND METHODS Disk-shaped specimens (1, 2, and 3 mm thick) were prepared using three commercial thermoplastic mouthguard materials (Bioplast, Impact Guard, MG 21) and one experimental mouthguard material [mixture of Poly (ethyl methacrylate)]. Impact force was applied by letting a stainless steel ball drop free-fall onto the specimens and then measuring the impact load under each specimen using a film sensor system and a load cell sensor system. RESULTS The total load measured with the film sensor system decreased with an increase in mouthguard thickness, while almost none of the transmitted impact forces measured with the load cell system were statistically different. CONCLUSIONS The film sensor system was considered to be superior to the load cell system because the maximum stress and stress area could be determined.
Dental Materials Journal | 2015
Amy Low; Hamidah Mohd Yusof; Fazal Reza; Asma Abdullah Nurul; Shaminea Sritharan; Niswathul Haania Zain Ali; Hasan Subhi Azeez; Adam Husein
This in vitro study aimed to evaluate setting time and compressive strength of gypsum-based chitosan biomaterials and its effect on proliferation of stem cells from human exfoliated deciduous teeth (SHED) and alkaline phosphatase (ALP) activity. Pure-GYP was mixed with water (2.5 g: 1.9 mL); Gyp-CHT was prepared with gypsum, chitosan, and water (2.5 g: 0.285 g: 1.9 mL). Cell viability and ALP activity were assessed at different periods. Data were analyzed using SPSS (p<0.05). The setting times were 2.7 min and 2.8 min for pure-GYP and Gyp-CHT, respectively. Significantly higher compressive strength was observed with Gyp-CHT. SHED treatments with both materials were not cytotoxic. ALP was consistently higher in the treated groups compared with the control. Cellular attachments were evident with SEM. Excellent cellular viability with pure-GYP and Gyp-CHT, as well as increased ALP activities, suggested the possibility of tertiary dentin formation. Further studies are necessary to evaluate the biomaterials for its pulp protective potentialities.
Journal of Conservative Dentistry | 2013
Nafsiyah Mahshim; Fazal Reza; Nor Shamsuria Omar
Aim: To evaluate physical properties and cytotoxicity of pure gypsum-based (pure-GYP) and experimental gypsum-based biomaterials mixed with polyacrylic acid (Gyp-PA). The results were compared with calcium hydroxide (CH) and glass ionomer cement (GIC) for application as base/liner materials. Materials and Methods: Vicats needle was used to measure the setting time and solubility (%) was determined by percentage of weight loss of the materials following immersion in distilled water. For cytotoxicity test, eluates of different concentrations of materials were obtained and pipetted onto L-929 mouse fibroblast cultures and incubated for 3 days. Cellular viability was assessed using Dimethylthiazol diphenyltetrazolium bromide test to determine the cytotoxicity level. Statistical significance was determined by one-way analysis of variance followed by post hoc test (P < 0.05). Results: Setting time was significantly higher for pure-GYP and Gyp-PA; solubility test showed a similar tendency (pure-Gyp > Gyp-PA > CH = GIC). The pure-Gyp was found as the least cytotoxic materials at different concentrations. At 100 mg/mL dilutions of materials in growth medium highest cytotoxicity was observed with CH group. Conclusion: Cytotoxic effect was not observed with pure-Gyp; application of this novel biomaterial on deeper dentin/an exposed pulp and possibility of gradual replacement of this biodegradable material by dentin like structure would be highly promising.
Journal of Conservative Dentistry | 2018
Hasan Subhi; Fazal Reza; Adam Husein; Asma Abdullah Nurul
Aim: The aim of this study was to evaluate the cytotoxicity effects of experimental gypsum-based biomaterial prepared with various concentrations of chitosan (Gyp-CHT). Materials and Methods: The study was performed using cell viability assay for mitochondrial dehydrogenase activity in stem cells from human exfoliated deciduous teeth (SHED), after 1, 2, and 3 days of exposure to the biomaterial extracts of varying concentrations. Differences in mean cell viability values were assessed by one-way analysis of variance, followed by Dunnett T3 post hoc test for multiple comparisons (P < 0.05). Results: The cell viability to Gyp-CHT in low extract concentrations was statistically similar to that of the control and different from that of high extract concentrations. Gyp-5% CHT showed the highest percentage of cell viability with 110.92%, 108.56%, and 109.11%. The cell viability showed a tendency toward increment with low extract concentration and no constant effect of CHT on cell viability toward higher or lower. Conclusions: Gyp-CHT biomaterial has no cytotoxic effects on the cultured SHED.
Journal of Prosthodontics | 2015
Salah Khalaf; Zaihan Ariffin; Adam Husein; Fazal Reza
PURPOSE This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. MATERIALS AND METHODS A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p < 0.05. RESULTS Roughness was significantly reduced in the silicone elastomers processed against coated gypsum materials (p < 0.001). The AFM and SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers. CONCLUSIONS Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold.
European Journal of Dentistry | 2015
Fazal Reza; Nur Sukainah Ibrahim
Objective: Fiber post is cemented to a root canal to restore coronal tooth structure. This research aims to evaluate the effect of ultraviolet (UV) irradiation on bond strength of fiber post with resin cement. Materials and Methods: A total of 40 of the two types of fiber posts, namely, FRC Prostec (FRC) and Fiber KOR (KOR), were used for the experiment. UV irradiation was applied on top of the fiber post surface for 0, 15, 20, and 30 min. The irradiated surface of the fiber posts (n = 5) were immediately bonded with resin cement (Rely X U200) after UV irradiation. Shear bond strength (SBS) MPa was measured, and the dislodged area of post surfaces was examined with scanning electron microscopes. Changes in surface roughness (Ra) of the FRC group after UV irradiation were observed (n = 3) using atomic force microscopy. Data of SBS were statistically analyzed using one-way analysis of variance, followed by multiple comparisons (P < 0.05). Results: SBS was significantly higher for 20 min of UV irradiation of the FRC group while significantly higher SBS was observed with 15 min of UV irradiation of the KOR group. Resin cement was more evident (cohesive failure) on the dislodged post surface of the UV treated groups compared with the control. The surface roughness of the FRC post was Ra = 175.1 nm and Ra = 929.2 nm for the control and the 20 min group, respectively. Conclusions: Higher surface roughness of the UV irradiated group indicated formation of mechanical retention on the fiber post surface. Evidence of cohesive failure was observed which indicated higher SBS of fiber post with the UV irradiated group.
International Journal of Biomaterials | 2018
Hasan Subhi; Fazal Reza; Adam Husein; Saaid Ayesh Al Shehadat; Asma Abdullah Nurul
Effective pulp capping material must be biocompatible and have the ability to induce dentin bridge formation as well as having suitable physical and mechanical properties; however, many current materials do not satisfy the clinical requirements. This study aimed to assess the physical and mechanical properties of gypsum-based chitosan material (Gp-CT) and to evaluate its effects on cellular properties of stem cells from human exfoliated deciduous teeth (SHED). The experimental material was prepared with different concentrations of chitosan (CT) with or without BMP-2. Then, setting time, compressive strength, and pH were determined. In addition, cell viability, alkaline phosphatase (ALP) activity, and cell attachment were assessed. The setting time, compressive strength, and pH obtained were 4.1–6.6 min, 2.63–5.83 MPa, and 6.5–5.7, respectively. The cell viability to gypsum (Gp) with different CT concentrations was similar to that of the control on day 1 but statistically different from that of Gp alone on day 3. The ALP activity of SHED was significantly higher (p < 0.05) in CT- and BMP-2-containing materials than those in the control and Dycal at days 3 and 14. The scanning electron microscopy (SEM) image revealed that flattened cells were distributed across and adhered to the material surface. In conclusion, Gp-CT material shows promise as a potential material for direct pulp capping.
Journal of Prosthodontics | 2017
Salah Khalaf; Zaihan Ariffin; Adam Husein; Fazal Reza
PURPOSE To compare the adhesion of three microorganisms on modified and unmodified silicone elastomer surfaces with different surface roughnesses and porosities. MATERIALS AND METHODS Candida albicans, Streptococcus mutans, and Staphylococcus aureus were incubated with modified and unmodified silicone groups (N = 35) for 30 days at 37°C. The counts of viable microorganisms in the accumulating biofilm layer were determined and converted to cfu/cm2 unit surface area. A scanning electron microscope (SEM) was used to evaluate the microbial adhesion. Statistical analysis was performed using t-test, one-way ANOVA, and post hoc tests as indicated. RESULTS Significant differences in microbial adhesion were observed between modified and unmodified silicone elastomers after the cells were incubated for 30 days (p < 0.001). SEM showed evident differences in microbial adhesion on modified silicone elastomer compared with unmodified silicone elastomer. CONCLUSIONS Surface modification of silicone elastomer yielding a smoother and less porous surface showed lower adhesion of different microorganisms than observed on unmodified surfaces.
Journal of Prosthodontics | 2017
Salah Khalaf; Zaihan Ariffin; Adam Husein; Fazal Reza
PURPOSE To compare the adhesion of three microorganisms on modified and unmodified silicone elastomer surfaces with different surface roughnesses and porosities. MATERIALS AND METHODS Candida albicans, Streptococcus mutans, and Staphylococcus aureus were incubated with modified and unmodified silicone groups (N = 35) for 30 days at 37°C. The counts of viable microorganisms in the accumulating biofilm layer were determined and converted to cfu/cm2 unit surface area. A scanning electron microscope (SEM) was used to evaluate the microbial adhesion. Statistical analysis was performed using t-test, one-way ANOVA, and post hoc tests as indicated. RESULTS Significant differences in microbial adhesion were observed between modified and unmodified silicone elastomers after the cells were incubated for 30 days (p < 0.001). SEM showed evident differences in microbial adhesion on modified silicone elastomer compared with unmodified silicone elastomer. CONCLUSIONS Surface modification of silicone elastomer yielding a smoother and less porous surface showed lower adhesion of different microorganisms than observed on unmodified surfaces.
Journal of Conservative Dentistry | 2012
Fazal Reza; Siau Peng Lim
Aim: To compare push-out bond strength between self-cured and dual-cured resin cement using a titanium post. Background: Dual-cured resin cements have been found to be less polymerized in the absence of light; thus the bond strength of cements would be compromised due to the absence of light with a metallic post. Materials and Methods: Ten extracted teeth were prepared for cement titanium PARAPOST, of five specimens each, with Panavia F [dual-cured (PF)] and Rely×Luting 2 [self-cured resin-modified glass ionomer luting cement (RL)]; the push-out bond strength (PBS) at three different levels of the sectioned roots was measured. The failure modes were observed and the significance of the differences in bond strength of the two types of cement at each level and at different levels of the same type was analyzed with non-parametric tests. Results: The push-out bond strength of the RL group was greater at all the three levels; with significant differences at the coronal and middle levels (P<0.05). No significant differences in PBS at different levels of the same group were observed. Cement material around the post was obvious in the PF group. The failure mode was mostly adhesive between the post and resin cement in the RL group. Conclusion: Bond strength was greater with self-cured, resin-modified glass ionomer luting cement, using titanium post.