Fazle Mabood
University of Peshawar
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fazle Mabood.
Journal of Engineering Thermophysics | 2017
S. M. Ibrahim; Prathi Vijaya Kumar; Giulio Lorenzini; E. Lorenzini; Fazle Mabood
The magnetohydrodynamic (MHD) stagnation point flow of Casson nanofluid over a nonlinear stretching sheet in the presence of velocity slip and convective boundary condition is examined. In this analysis, various effects such as velocity ratio, viscous dissipation, heat generation/absorption and chemical reaction are accentuated. Possessions of Brownian motion and thermophoresis are also depicted in this study. A uniform magnetic field as well as suction is taken into account. Suitable similarity transformations are availed to convert the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations and then series solutions are secured using a homotopy analysis method (HAM). Notable accuracy of the present results has been obtained with the earlier results. Impact of distinct parameters on velocity, temperature, concentration, skin friction coefficient,Nusselt number and Sherwood number is canvassed through graphs and tabular forms.
Journal of Engineering Thermophysics | 2016
Fazle Mabood; Reda G. Abdel-Rahman; Giulio Lorenzini
In this study, the effects of variable fluid properties on heat transfer in MHD Casson fluid melts over a moving surface in a porous medium in the presence of the radiation are examined. The relevant similarity transformations are used to reduce the governing equations into a system of highly nonlinear ordinary differential equations and those are then solved numerically using the Runge–Kutta–Fehlbergmethod. The effects of different controlling parameters, namely, the Casson parameter,melting and radiation parameters, Prandtl number,magnetic field, porosity, viscosity and the thermal conductivity parameters on flow and heat transfer are investigated. The numerical results for the dimensionless velocity and temperature as well as friction factor and reducedNusselt number are presented graphically and discussed. It is found that the rate of heat transfer increases as the Casson parameter increases.
Journal of Engineering Thermophysics | 2017
Stanford Shateyi; Fazle Mabood; Giulio Lorenzini
The present study investigates a Casson fluid flow in the presence of free convection of combined heat and mass transfer toward an unsteady permeable stretching sheet with thermal radiation, viscous dissipation and chemical reaction. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations and then solved by an efficient Runge–Kutta–Fehlberg method. The dimensionless velocity is decreased by increasing values of the chemical reaction and magnetic parameter while fluid temperature is significantly reduced by increasing values of the Prandtl number. The heat transfer rate is reduced with increasing values of thermal radiation and magnetic parameters.
The Journal of Engineering | 2016
Fazle Mabood; Nopparat Pochai; Stanford Shateyi
A theoretical investigation is carried out to examine the effects of volume fraction of nanoparticles, suction/injection, and convective heat and mass transfer parameters on MHD stagnation point flow of water-based nanofluids (Cu and Ag). The governing partial differential equations for the fluid flow, temperature, and concentration are reduced to a system of nonlinear ordinary differential equations. The derived similarity equations and corresponding boundary conditions are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method. To exhibit the effect of the controlling parameters on the dimensionless velocity, temperature, nanoparticle volume fraction, skin friction factor, and local Nusselt and local Sherwood numbers, numerical results are presented in graphical and tabular forms. It is found that the friction factor and heat and mass transfer rates increase with magnetic field and suction/injection parameters.
Journal of Engineering Thermophysics | 2017
S. M. Ibrahim; Fazle Mabood; K. Suneetha; Giulio Lorenzini
The elevated temperature electromagnetic materials production system in chemical engineering requires increasingly more refined theoretical and computational models for describing multiple, simultaneous thermophysical effects. Motivated by this application, the present paper addresses heat and mass transfer in a chemically reacting laminar mixed convection flow from a vertical sheet with inducedmagnetic field. The governing equations of the flow are solved analytically using a perturbation technique. The influences of various established parameters on the flow, induced magnetic field, and heat and mass transfer are studied graphically in the present analysis. Finally, we also obtained expressions for shear stress, current density and Nusselt number, and discussed the results through tables.
Advances in Mathematical Physics | 2015
Fazle Mabood; Nopparat Pochai
We have investigated a thin film flow of a third grade fluid on a moving belt using a powerful and relatively new approximate analytical technique known as optimal homotopy asymptotic method (OHAM). The variation of velocity profile for different parameters is compared with the numerical values obtained by Runge-Kutta Fehlberg fourth-fifth order method and with Adomian Decomposition Method (ADM). An interesting result of the analysis is that the three terms OHAM solution is more accurate than five terms of the ADM solution and this thus confirms the feasibility of the proposed method.
Advances in Mathematical Physics | 2016
Fazle Mabood; Nopparat Pochai
We investigated the magnetohydrodynamic (MHD) boundary layer flow over a nonlinear porous stretching sheet with the help of semianalytical method known as optimal homotopy asymptotic method (OHAM). The effects of different parameters on fluid flow are investigated and discussed. The obtained results are compared with numerical Runge-Kutta-Fehlberg fourth-fifth-order method. It is found that the OHAM solution agrees well with numerical as well as published data for different assigned values of parameters; this thus indicates the feasibility of the proposed method (OHAM).
International Journal of Engineering | 2013
Fazle Mabood; Nopparat Pochai
We employ approximate analytical method, namely, Optimal Homotopy Asymptotic Method (OHAM), to investigate a one-dimensional steady advection-diffusion-reaction equation with variable inputs arises in the mathematical modeling of dispersion of pollutants in water is proposed. Numerical values are obtained via Runge-Kutta-Fehlberg fourth-fifth order method for comparison purpose. It was found that OHAM solution agrees well with the numerical solution. An example is included to demonstrate the efficiency, accuracy, and simplicity of the proposed method.
Journal of Engineering Thermophysics | 2017
Fazle Mabood; S. M. Ibrahim; Giulio Lorenzini
Several boundary layer flowswith heat and mass transfer problems do arise from a pebble bed nuclear reactor system. In this study, we examine the combined effects of variable thermal conductivity, thermal diffusion, diffusion thermo, heat source, chemical reaction and fluid rotation on hydromagnetic mixed convective flow with heat and mass transfer over a vertical plate embedded in porous medium. The governing partial differential equations have been transformed into a system of ordinary differential equations by employing the similarity transformation and solved numerically using the Runge–Kutta–Fehlberg method with a shooting technique. Pertinent results obtained are presented graphically and in tabular form with respect to variation in various thermophysical parameters. A comparison of the special case of this study with the previously published work shows excellent agreement.
Advances in Mathematical Physics | 2015
Fazle Mabood; Nopparat Pochai
The heat flow patterns profiles are required for heat transfer simulation in each type of the thermal insulation. The exothermic reaction models in porous medium can prescribe the problems in the form of nonlinear ordinary differential equations. In this research, the driving force model due to the temperature gradients is considered. A governing equation of the model is restricted into an energy balance equation that provides the temperature profile in conduction state with constant heat source on the steady state. The proposed optimal homotopy asymptotic method (OHAM) is used to compute the solutions of the exothermic reactions equation.