Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Federica Arrigoni is active.

Publication


Featured researches published by Federica Arrigoni.


Inorganic Chemistry | 2015

DFT Dissection of the Reduction Step in H2 Catalytic Production by [FeFe]-Hydrogenase-Inspired Models: Can the Bridging Hydride Become More Reactive Than the Terminal Isomer?

Giulia Filippi; Federica Arrigoni; Luca Bertini; Luca De Gioia; Giuseppe Zampella

Density functional theory has been used to study diiron dithiolates [HFe2(xdt)(PR3)n(CO)5-nX] (n = 0, 2, 4; R = H, Me, Et; X = CH3S(-), PMe3, NHC = 1,3-dimethylimidazol-2-ylidene; xdt = adt, pdt; adt = azadithiolate; pdt = propanedithiolate). These species are related to the [FeFe]-hydrogenases catalyzing the 2H(+) + 2e(-) ↔ H2 reaction. Our study is focused on the reduction step following protonation of the Fe2(SR)2 core. Fe(H)s detected in solution are terminal (t-H) and bridging (μ-H) hydrides. Although unstable versus μ-Hs, synthetic t-Hs feature milder reduction potentials than μ-Hs. Accordingly, attempts were previously made to hinder the isomerization of t-H to μ-H. Herein, we present another strategy: in place of preventing isomerization, μ-H could be made a stronger oxidant than t-H (E°μ-H > E°t-H). The nature and number of PR3 unusually affect ΔE°t-H-μ-H: 4PEt3 models feature a μ-H with a milder E° than t-H, whereas the 4PMe3 analogues behave oppositely. The correlation ΔE°t-H-μ-H ↔ stereoelectronic features arises from the steric strain induced by bulky Et groups in 4PEt3 derivatives. One-electron reduction alleviates intramolecular repulsions only in μ-H species, which is reflected in the loss of bridging coordination. Conversely, in t-H, the strain is retained because a bridging CO holds together the Fe2 core. That implies that E°μ-H > E°t-H in 4-PEt3 species but not in 4PMe3 analogues. Also determinant to observe E°μ-H > E°t-H is the presence of a Fe apical σ-donor because its replacement with a CO yields E°μ-H < E°t-H even in 4PEt3 species. Variants with neutral NHC and PMe3 in place of CH3S(-) still feature E°μ-H > E°t-H. Replacing pdt with (Hadt)(+) lowers E° but yields E°μ-H < E°t-H, indicating that μ-H activation can occur to the detriment of the overpotential increase. In conclusion, our results indicate that the electron richness of the Fe2 core influences ΔE°t-H-μ-H, provided that (i) the R size of PR3 must be greater than that of Me and (ii) an electron donor must be bound to Fe apically.


Siam Journal on Imaging Sciences | 2016

Spectral Synchronization of Multiple Views in SE(3)

Federica Arrigoni; Beatrice Rossi; Andrea Fusiello

This paper addresses the problem of rigid-motion synchronization (a.k.a. motion averaging) in the Special Euclidean Group SE(3), which finds application in structure-from-motion and registration of multiple three-dimensional (3D) point-sets. After relaxing the geometric constraints of rigid motions, we derive a simple closed-form solution based on a spectral decomposition, which is then projected onto SE(3). Our formulation is extremely efficient, as rigid-motion synchronization is cast to an eigenvalue decomposition problem. Robustness to outliers is gained through Iteratively Reweighted Least Squares. Besides providing a theoretically appealing solution, since our method recovers at the same time both rotations and translations, we demonstrate through experimental results that our approach is significantly faster than the state of the art, while providing accurate estimates of rigid motions.


european conference on computer vision | 2016

Global Registration of 3D Point Sets via LRS Decomposition

Federica Arrigoni; Beatrice Rossi; Andrea Fusiello

This paper casts the global registration of multiple 3D point-sets into a low-rank and sparse decomposition problem. This neat mathematical formulation caters for missing data, outliers and noise, and it benefits from a wealth of available decomposition algorithms that can be plugged-in. Experimental results show that this approach compares favourably to the state of the art in terms of precision and speed, and it outperforms all the analysed techniques as for robustness to outliers.


international conference on 3d vision | 2015

On Computing the Translations Norm in the Epipolar Graph

Federica Arrigoni; Andrea Fusiello; Beatrice Rossi

This paper deals with the problem of recovering the unknown norm of relative translations between cameras based on the knowledge of relative rotations and translation directions. We provide theoretical conditions for the solvability of such a problem, and we propose a two-stage method to solve it. First, a cycle basis for the epipolar graph is computed, then all the scaling factors are recovered simultaneously by solving a homogeneous linear system. We demonstrate the accuracy of our solution by means of synthetic and real experiments.


Inorganic Chemistry | 2017

Mechanistic Insight into Electrocatalytic H2 Production by [Fe2(CN){μ-CN(Me)2}(μ-CO)(CO)(Cp)2]: Effects of Dithiolate Replacement in [FeFe] Hydrogenase Models

Federica Arrigoni; Luca Bertini; Luca De Gioia; Andrea Cingolani; Rita Mazzoni; Valerio Zanotti; Giuseppe Zampella

DFT has been used to investigate viable mechanisms of the hydrogen evolution reaction (HER) electrocatalyzed by [Fe2(CN){μ-CN(Me)2}(μ-CO)(CO)(Cp)2] (1) in AcOH. Molecular details underlying the proposed ECEC electrochemical sequence have been studied, and the key functionalities of CN- and amino-carbyne ligands have been elucidated. After the first reduction, CN- works as a relay for the first proton from AcOH to the carbyne, with this ligand serving as the main electron acceptor for both reduction steps. After the second reduction, a second protonation occurs at CN- that forms a Fe(CNH) moiety: i.e., the acidic source for the H2 generation. The hydride (formally 2e/H+), necessary to the heterocoupling with H+ is thus provided by the μ-CN(Me)2 ligand and not by Fe centers, as occurs in typical L6Fe2S2 derivatives modeling the hydrogenase active site. It is remarkable, in this regard, that CN- plays a role more subtle than that previously expected (increasing electron density at Fe atoms). In addition, the role of AcOH in shuttling protons from CN- to CN(Me)2 is highlighted. The incompetence for the HER of the related species [Fe2{μ-CN(Me)2}(μ-CO)(CO)2(Cp)2]+ (2+) has been investigated and attributed to the loss of proton responsiveness caused by CN- replacement with CO. In the context of hydrogenase mimicry, an implication of this study is that the dithiolate strap, normally present in all synthetic models, can be removed from the Fe2 core without loss of HER, but the redox and acid-base processes underlying turnover switch from a metal-based to a ligand-based chemistry. The versatile nature of the carbyne, once incorporated in the Fe2 scaffold, could be exploited to develop more active and robust catalysts for the HER.


Chemistry: A European Journal | 2017

Influence of the Dithiolate Bridge on the Oxidative Processes of Diiron Models Related to the Active Site of [FeFe] Hydrogenases

Federica Arrigoni; Salma Mohamed Bouh; Luca De Gioia; Catherine Elleouet; François Y. Pétillon; Philippe Schollhammer; Giuseppe Zampella

Electrochemical studies of [Fe2 (CO)4 (κ2 -dmpe)(μ-dithiolate)] (dithiolate=adtBn , pdt) and density functional theory (DFT) calculations reveal the striking influence of an amine functionality in the dithiolate bridge on their oxidative properties. [Fe2 (CO)4 (κ2 -dmpe)(μ-adtBn )] (1) undergoes two one-electron oxidation steps, with the first being partially reversible and the second irreversible. When the adtBn bridge is replaced with pdt, a shift of 60 mV towards more positive potentials is observed for the first oxidation whereas 290 mV separate the oxidation potentials of the two cations. Under CO, oxidation of azadithiolate compound 1 occurs according to an ECE process whereas an EC mechanism takes place for the propanedithiolate species 2. The dication species [1-CO]2+ resulting from the two-electron oxidation of 1 has been spectroscopically and structurally characterized. The molecular details underlying the reactivity of oxidized species have been explored by DFT calculations. The differences in the behaviors of 1 and 2 are mainly due to the presence, or not, of favored interactions between the dithiolate bridge and the diiron site depending on the redox states, FeI FeII or FeII FeII , of the complexes.


international conference on image analysis and processing | 2015

Robust and Efficient Camera Motion Synchronization via Matrix Decomposition

Federica Arrigoni; Beatrice Rossi; Andrea Fusiello

In this paper we present a structure-from-motion pipeline based on the synchronization of relative motions derived from epipolar geometries. We combine a robust rotation synchronization technique with a fast translation synchronization method from the state of the art. Both reduce to computing matrix decompositions: low-rank & sparse and spectral decomposition. These two steps successfully solve the motion synchronization problem in a way that is both efficient and robust to outliers. The pipeline is global for it considers all the images at the same time. Experimental validation demonstrates that our pipeline compares favourably with some recently proposed methods.


Inorganic Chemistry | 2016

Preparation and Protonation of Fe2(pdt)(CNR)6, Electron-Rich Analogues of Fe2(pdt)(CO)6.

Xiaoyuan Zhou; Bryan E. Barton; Geoffrey M. Chambers; Thomas B. Rauchfuss; Federica Arrigoni; Giuseppe Zampella

The complexes Fe2(pdt)(CNR)6 (pdt(2-) = CH2(CH2S(-))2) were prepared by thermal substitution of the hexacarbonyl complex with the isocyanides RNC for R = C6H4-4-OMe (1), C6H4-4-Cl (2), Me (3). These complexes represent electron-rich analogues of the parent Fe2(pdt)(CO)6. Unlike most substituted derivatives of Fe2(pdt)(CO)6, these isocyanide complexes are sterically unencumbered and have the same idealized symmetry as the parent hexacarbonyl derivatives. Like the hexacarbonyls, the stereodynamics of 1-3 involve both turnstile rotation of the Fe(CNR)3 as well as the inversion of the chair conformation of the pdt ligand. Structural studies indicate that the basal isocyanide has nonlinear CNC bonds and short Fe-C distances, indicating that they engage in stronger Fe-C π-backbonding than the apical ligands. Cyclic voltammetry reveals that these new complexes are far more reducing than the hexacarbonyls, although the redox behavior is complex. Estimated reduction potentials are E1/2 ≈ -0.6 ([2](+/0)), -0.7 ([1](+/0)), and -1.25 ([3](+/0)). According to DFT calculations, the rotated isomer of 3 is only 2.2 kcal/mol higher in energy than the crystallographically observed unrotated structure. The effects of rotated versus unrotated structure and of solvent coordination (THF, MeCN) on redox potentials were assessed computationally. These factors shift the redox couple by as much as 0.25 V, usually less. Compounds 1 and 2 protonate with strong acids to give the expected μ-hydrides [H1](+) and [H2](+). In contrast, 3 protonates with [HNEt3]BAr(F)4 (pKa(MeCN) = 18.7) to give the aminocarbyne [Fe2(pdt)(CNMe)5(μ-CN(H)Me)](+) ([3H](+)). According to NMR measurements and DFT calculations, this species adopts an unsymmetrical, rotated structure. DFT calculations further indicate that the previously described carbyne complex [Fe2(SMe)2(CO)3(PMe3)2(CCF3)](+) also adopts a rotated structure with a bridging carbyne ligand. Complex [3H](+) reversibly adds MeNC to give [Fe2(pdt)(CNR)6(μ-CN(H)Me)](+) ([3H(CNMe)](+)). Near room temperature, [3H](+) isomerizes to the hydride [(μ-H)Fe2(pdt)(CNMe)6](+) ([H3](+)) via a first-order pathway.


Inorganic Chemistry | 2018

Electron-Rich, Diiron Bis(monothiolato) Carbonyls: C–S Bond Homolysis in a Mixed Valence Diiron Dithiolate

Qianli Li; Noémie Lalaoui; Toby J. Woods; Thomas B. Rauchfuss; Federica Arrigoni; Giuseppe Zampella

The synthesis and redox properties are presented for the electron-rich bis(monothiolate)s Fe2(SR)2(CO)2(dppv)2 for R = Me ([1]0), Ph ([2]0), CH2Ph ([3]0). Whereas related derivatives adopt C2-symmetric Fe2(CO)2P4 cores, [1]0-[3]0 have Cs symmetry resulting from the unsymmetrical steric properties of the axial vs equatorial R groups. Complexes [1]0-[3]0 undergo 1e- oxidation upon treatment with ferrocenium salts to give the mixed valence cations [Fe2(SR)2(CO)2(dppv)2]+. As established crystallographically, [3]+ adopts a rotated structure, characteristic of related mixed valence diiron complexes. Unlike [1]+ and [2]+ and many other [Fe2(SR)2L6]+ derivatives, [3]+ undergoes C-S bond homolysis, affording the diferrous sulfido-thiolate [Fe2(SCH2Ph)(S)(CO)2(dppv)2]+ ([4]+). According to X-ray crystallography, the first coordination spheres of [3]+ and [4]+ are similar, but the Fe-sulfido bonds are short in [4]+. The conversion of [3]+ to [4]+ follows first-order kinetics, with k = 2.3 × 10-6 s-1 (30 °C). When the conversion is conducted in THF, the organic products are toluene and dibenzyl. In the presence of TEMPO, the conversion of [3]+ to [4]+ is accelerated about 10×, the main organic product being TEMPO-CH2Ph. DFT calculations predict that the homolysis of a C-S bond is exergonic for [Fe2(SCH2Ph)2(CO)2(PR3)4]+ but endergonic for the neutral complex as well as less substituted cations. The unsaturated character of [4]+ is indicated by its double carbonylation to give [Fe2(SCH2Ph)(S)(CO)4(dppv)2]+ ([5]+), which adopts a bioctahedral structure.


Chemistry: A European Journal | 2018

Electrochemical and Theoretical Investigations of the Oxidatively Induced Reactivity of the Complex [Fe2(CO)4(κ2-dmpe)(μ-adtBn)] Related to the Active Site of [FeFe] Hydrogenases

Federica Arrigoni; Salma Mohamed Bouh; Catherine Elleouet; François Y. Pétillon; Philippe Schollhammer; Luca De Gioia; Giuseppe Zampella

Electrochemical oxidation of the complex [Fe2 (CO)4 (κ2 -dmpe)(μ-adtBn )] (adtBn =(SCH2 )2 NCH2 C6 H5 , dmpe=Me2 PCH2 CH2 PMe2 ) (1) has been studied by cyclic voltammetry (CV) in acetonitrile and in dichloromethane in the presence of various substrates L (L=MeCN, trimethylphosphite, isocyanide). The oxidized species, [1-MeCN](PF6 )2 , [1-(P(OMe)3 )2 ](PF6 )2 and [1-(RNC)4 ](PF6 )2 (R=tert-butyl, xylyl), have been prepared and characterized by IR and NMR spectroscopies and, except [1-MeCN](PF6 )2 , by X-ray diffraction analysis. The crystallographic structures of the new FeII FeII complexes reveal that the association of one additional ligand (P(OMe)3 or RNC) occurs and, according to the nature of the substrates, further substitutions of one or three carbonyl groups, by P(OMe)3 or RNC, respectively, arise. Density functional theory (DFT) calculations have been performed to elucidate and discriminate, in each case, the mechanisms leading to the corresponding oxidized species. Moreover, the different degree of ligand substitution in the diiron core has been theoretically rationalized.

Collaboration


Dive into the Federica Arrigoni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Zampella

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca De Gioia

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G Zampella

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

L Bertini

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piercarlo Fantucci

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge