Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Federica Benvenuti is active.

Publication


Featured researches published by Federica Benvenuti.


Journal of Immunology | 2008

Expression of Wiskott-Aldrich Syndrome Protein in Dendritic Cells Regulates Synapse Formation and Activation of Naive CD8+ T Cells

Julian Pulecio; Elisa Tagliani; Alix Scholer; Francesca Prete; Luc Fetler; Oscar R. Burrone; Federica Benvenuti

The Wiskott-Aldrich syndrome protein (WASp) is a key regulator of actin polimerization in hematopoietic cells. Mutations in WASp cause a severe immunodeficiency characterized by defective initiation of primary immune response and autoimmunity. The contribution of altered dendritic cells (DCs) functions to the disease pathogenesis has not been fully elucidated. In this study, we show that conventional DCs develop normally in WASp-deficient mice. However, Ag targeting to lymphoid organ-resident DCs via anti-DEC205 results in impaired naive CD8+ T cell activation, especially at low Ag doses. Altered trafficking of Ag-bearing DCs to lymph nodes (LNs) accounts only partially for defective priming because correction of DCs migration does not rescue T cell activation. In vitro and in vivo imaging of DC-T cell interactions in LNs showed that cytoskeletal alterations in WASp null DCs causes a reduction in the ability to form and stabilize conjugates with naive CD8+ T lymphocytes both in vitro and in vivo. These data indicate that WASp expression in DCs regulates both the ability to traffic to secondary lymphoid organs and to activate naive T cells in LNs.


Journal of Immunology | 2008

Selection of an Antibody Library Identifies a Pathway to Induce Immunity by Targeting CD36 on Steady-State CD8α+ Dendritic Cells

Elisa Tagliani; Pierre Guermonprez; Jorge Sepúlveda; María López-Bravo; Carlos Ardavín; Sebastian Amigorena; Federica Benvenuti; Oscar R. Burrone

Improvement of the strategy to target tumor Ags to dendritic cells (DCs) for immunotherapy requires the identification of the most appropriate ligand/receptor pairing. We screened a library of Ab fragments on mouse DCs to isolate new potential Abs capable of inducing protective immune responses. The screening identified a high-affinity Ab against CD36, a multi-ligand scavenger receptor primarily expressed by the CD8α+ subset of conventional DCs. The Ab variable regions were genetically linked to the model Ag OVA and tested in Ag presentation assays in vitro and in vivo. Anti-CD36-OVA was capable of delivering exogenous Ags to the MHC class I and MHC class II processing pathways. In vivo, immunization with anti-CD36-OVA induced robust activation of naive CD4+ and CD8+ Ag-specific T lymphocytes and the differentiation of primed CD8+ T cells into long-term effector CTLs. Vaccination with anti-CD36-OVA elicited humoral and cell-mediated protection from the growth of an Ag-specific tumor. Notably, the relative efficacy of targeting CD11c/CD8α+ via CD36 or DEC205 was qualitatively different. Anti-DEC205-OVA was more efficient than anti-CD36-OVA in inducing early events of naive CD8+ T cell activation. In contrast, long-term persistence of effector CTLs was stronger following immunization with anti-CD36-OVA and did not require the addition of exogenous maturation stimuli. The results identify CD36 as a novel potential target for immunotherapy and indicate that the outcome of the immune responses vary by targeting different receptors on CD8α+ DCs.


Journal of Experimental Medicine | 2013

Wiskott-Aldrich syndrome protein–mediated actin dynamics control type-I interferon production in plasmacytoid dendritic cells

Francesca Prete; Marco Catucci; Mayrel Labrada; Stefania Gobessi; Maria Carmina Castiello; Elisa Bonomi; Alessandro Aiuti; William Vermi; Caterina Cancrini; Ayse Metin; Sophie Hambleton; Robbert G. M. Bredius; Luigi D. Notarangelo; Mirjam van der Burg; Ulrich Kalinke; Anna Villa; Federica Benvenuti

Wiskott-Aldrich Syndrome protein (WASp)–mediated actin polymerization controls intracellular trafficking and compartmentalization of TLR9 ligands in plasmacytoid dendritic cells.


Blood | 2012

Control of murine Ly6C(high) monocyte traffic and immunosuppressive activities by atypical chemokine receptor D6.

Benedetta Savino; Marina Gomes Miranda e Castor; Nicoletta Caronni; Adelaida Sarukhan; Achille Anselmo; Chiara Buracchi; Federica Benvenuti; Vanessa Pinho; Mauro M. Teixeira; Alberto Mantovani; Massimo Locati; Raffaella Bonecchi

The atypical chemokine receptor D6 is a decoy and scavenger receptor for most inflammatory CC chemokines and prevents the development of exacerbated inflammatory reactions. Here we report that mice lacking D6 expression in the nonhematopoietic compartment have a selective increase in the number of Ly6C(high) monocytes in the circulation and in secondary lymphoid tissues. Under inflammatory conditions, Ly6C(high) monocytes accumulate in increased number in secondary lymphoid organs of D6(-/-) mice in a CCR2-dependent manner. Ly6C(high) monocytes derived from D6(-/-) mice have enhanced immunosuppressive activity, inhibit the development of adaptive immune responses, and partially protect mice from the development of GVHD. Thus, control of CCR2 ligands by D6 regulates the traffic of Ly6C(high) monocytes and controls their immunosuppressive potential.


Cancer Immunology, Immunotherapy | 2005

BCL1 lymphoma protection induced by idiotype DNA vaccination is entirely dependent on anti-idiotypic antibodies

Michela Cesco-Gaspere; Federica Benvenuti; Oscar R. Burrone

Abstract DNA vaccination with the idiotype (Id) of tumour B-cell membrane immunoglobulins (Ig) is a validated strategy to induce tumour protection to several mouse lymphomas. The relative contribution of anti-Id antibodies and T lymphocytes to tumour rejection is still debated. Previous studies in the BCL1 lymphoma model showed that scFv DNA immunisation induces a polyclonal antibody response restricted to conformational epitopes formed by the parental VL/VH association. We implemented a system based on this specificity to investigate the mechanism of BCL1 lymphoma protection induced by DNA immunisation. Antibody response and survival of mice immunised with the tumour Id scFv were compared with those of mice immunised simultaneously with two chimeric scFvs, containing either the tumour-derived VL or VH paired to an irrelevant VH or VL domain, respectively. Animals vaccinated with one or both chimeric constructs were not protected, despite the exposure to all putative tumour Id-derived MHC class I and class II T-cell epitopes. In addition, conformational antibodies induced by DNA vaccination caused tumour cells apoptosis and cell cycle arrest in vitro and transferred protection in vivo. Therefore, lymphoma rejection appears to be completely dependent on the induction of anti-Id antibodies.


Frontiers in Immunology | 2016

The Dendritic Cell Synapse: A Life Dedicated to T Cell Activation

Federica Benvenuti

T-cell activation within immunological synapses is a complex process whereby different types of signals are transmitted from antigen-presenting cells to T cells. The molecular strategies developed by T cells to interpret and integrate these signals have been systematically dissected in recent years and are now in large part understood. On the other side of the immune synapse, dendritic cells (DCs) participate actively in synapse formation and maintenance by remodeling of membrane receptors and intracellular content. However, the details of such changes have been only partially characterized. The DCs actin cytoskeleton has been one of the first systems to be identified as playing an important role in T-cell priming and some of the underlying mechanisms have been elucidated. Similarly, the DCs microtubule cytoskeleton undergoes major spatial changes during synapse formation that favor polarization of the DCs subcellular space toward the interacting T cell. Recently, we have begun to investigate the trafficking machinery that controls polarized delivery of endosomal vesicles at the DC–T immune synapse with the aim of understanding the functional relevance of polarized secretion of soluble factors during T-cell priming. Here, we will review the current knowledge of events occurring in DCs during synapse formation and discuss the open questions that still remain unanswered.


Cell Reports | 2016

The SNARE VAMP7 Regulates Exocytic Trafficking of Interleukin-12 in Dendritic Cells

Giulia Chiaruttini; Giulia M. Piperno; Mabel Jouve; Francesca De Nardi; Paola Larghi; Andrew A. Peden; Gabriele Baj; Sabina Müller; Salvatore Valitutti; Thierry Galli; Federica Benvenuti

Summary Interleukin-12 (IL-12), produced by dendritic cells in response to activation, is central to pathogen eradication and tumor rejection. The trafficking pathways controlling spatial distribution and intracellular transport of IL-12 vesicles to the cell surface are still unknown. Here, we show that intracellular IL-12 localizes in late endocytic vesicles marked by the SNARE VAMP7. Dendritic cells (DCs) from VAMP7-deficient mice are partially impaired in the multidirectional release of IL-12. Upon encounter with antigen-specific T cells, IL-12-containing vesicles rapidly redistribute at the immune synapse and release IL-12 in a process entirely dependent on VAMP7 expression. Consistently, acquisition of effector functions is reduced in T cells stimulated by VAMP7-null DCs. These results provide insights into IL-12 intracellular trafficking pathways and show that VAMP7-mediated release of IL-12 at the immune synapse is a mechanism to transmit innate signals to T cells.


Frontiers in Immunology | 2015

Human Immunodeficiencies Related to Defective APC/T Cell Interaction.

Marinos Kallikourdis; Antonella Viola; Federica Benvenuti

The primary event for initiating adaptive immune responses is the encounter between T lymphocytes and antigen presenting cells (APCs) in the T cell area of secondary lymphoid organs and the formation of highly organized intercellular junctions referred to as immune synapses (IS). In vivo live-cell imaging of APC–T cell interactions combined to functional studies unveiled that T cell fate is dictated, in large part, by the stability of the initial contact. Immune cell interaction is equally important during delivery of T cell help to B cells and for the killing of target cells by cytotoxic T cells and NK cells. The critical role of contact dynamics and synapse stability on the immune response is well illustrated by human immune deficiencies in which disease pathogenesis is linked to altered adhesion or defective cross-talk between the synaptic partners. The Wiskott–Aldrich syndrome (WAS) is a severe primary immunodeficiency caused by mutations in the Wiskott–Aldrich syndrome protein (WASp), a scaffold that promotes actin polymerization and links TCR stimulation to T cell activation. Absence or mutations in WASp affects intercellular APC–T cell communications by interfering with multiple mechanisms on both sides of the IS. The warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is caused by mutations in CXCR4, a chemokine receptor that in mutant form leads to impairment of APC–T cell interactions. Present evidences suggest that other recently characterized primary immune deficiencies caused by mutation in genes linked to actin cytoskeletal reorganization, such as WIP and DOCK8, may also depend on altered synapse stability. Here, we will discuss in details the mechanisms of disturbed APC–T cell interactions in WAS and WHIM. Moreover, we will summarize the evidence pointing to a compromised conjugate formation in WIP, DOCK8, and X-linked lymphoproliferative syndrome.


Nature Communications | 2017

A covalent PIN1 inhibitor selectively targets cancer cells by a dual mechanism of action

Elena Campaner; Alessandra Rustighi; Alessandro Zannini; Alberto Cristiani; Silvano Piazza; Yari Ciani; Ori Kalid; Gali Golan; Erkan Baloglu; Sharon Shacham; Barbara Valsasina; Ulisse Cucchi; Agnese Chiara Pippione; Marco L. Lolli; Barbara Giabbai; Paola Storici; Paolo Carloni; Giulia Rossetti; Federica Benvenuti; Ezia Bello; Maurizio D'Incalci; Elisa Cappuzzello; Antonio Rosato; Giannino Del Sal

The prolyl isomerase PIN1, a critical modifier of multiple signalling pathways, is overexpressed in the majority of cancers and its activity strongly contributes to tumour initiation and progression. Inactivation of PIN1 function conversely curbs tumour growth and cancer stem cell expansion, restores chemosensitivity and blocks metastatic spread, thus providing the rationale for a therapeutic strategy based on PIN1 inhibition. Notwithstanding, potent PIN1 inhibitors are still missing from the arsenal of anti-cancer drugs. By a mechanism-based screening, we have identified a novel covalent PIN1 inhibitor, KPT-6566, able to selectively inhibit PIN1 and target it for degradation. We demonstrate that KPT-6566 covalently binds to the catalytic site of PIN1. This interaction results in the release of a quinone-mimicking drug that generates reactive oxygen species and DNA damage, inducing cell death specifically in cancer cells. Accordingly, KPT-6566 treatment impairs PIN1-dependent cancer phenotypes in vitro and growth of lung metastasis in vivo.


Gene Therapy | 2012

Dendritic cell functional improvement in a preclinical model of lentiviral-mediated gene therapy for Wiskott-Aldrich syndrome

Marco Catucci; Francesca Prete; Marita Bosticardo; Maria Carmina Castiello; Elena Draghici; Michela Locci; Maria Grazia Roncarolo; Alessandro Aiuti; Federica Benvenuti; Anna Villa

Wiskott–Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency caused by the defective expression of the WAS protein (WASP) in hematopoietic cells. It has been shown that dendritic cells (DCs) are functionally impaired in WAS patients and was−/− mice. We have previously demonstrated the efficacy and safety of a murine model of WAS gene therapy (GT), using stem cells transduced with a lentiviral vector (LV). The aim of this study was to investigate whether GT can correct DC defects in was−/− mice. As DCs expressing WASP were detected in the secondary lymphoid organs of the treated mice, we tested the in vitro and in vivo function of bone marrow-derived DCs (BMDCs). The BMDCs showed efficient in vitro uptake of latex beads and Salmonella typhimurium. When BMDCs from the treated mice (GT BMDCs) and the was−/− mice were injected into wild-type hosts, we found a higher number of cells that had migrated to the draining lymph nodes compared with mice injected with was−/− BMDCs. Finally, we found that ovalbumin (OVA)-pulsed GT BMDCs or vaccination of GT mice with anti-DEC205 OVA fusion protein can efficiently induce antigen-specific T-cell activation in vivo. These findings show that WAS GT significantly improves DC function, thus adding new evidence of the preclinical efficacy of LV-mediated WAS GT.

Collaboration


Dive into the Federica Benvenuti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesca Prete

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Maria Carmina Castiello

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Anna Villa

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alessandro Aiuti

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Asma Naseem

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Marita Bosticardo

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Oscar R. Burrone

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giulia Chiaruttini

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge