Federica Bertocchini
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Federica Bertocchini.
Nature | 2007
Octavian Voiculescu; Federica Bertocchini; Lewis Wolpert; Ray Keller; Claudio D. Stern
During gastrulation, a single epithelial cell layer, the ectoderm, generates two others: the mesoderm and the endoderm. In amniotes (birds and mammals), mesendoderm formation occurs through an axial midline structure, the primitive streak, the formation of which is preceded by massive ‘polonaise’ movements of ectoderm cells. The mechanisms controlling these processes are unknown. Here, using multi-photon time-lapse microscopy of chick (Gallus gallus) embryos, we reveal a medio-lateral cell intercalation confined to the ectodermal subdomain where the streak will later form. This intercalation event differs from the convergent extension movements of the mesoderm described in fish and amphibians (anamniotes): it occurs before gastrulation and within a tight columnar epithelium. Fibroblast growth factor from the extraembryonic endoderm (hypoblast, a cell layer unique to amniotes) directs the expression of Wnt planar-cell-polarity pathway components to the intercalation domain. Disruption of this Wnt pathway causes the mesendoderm to form peripherally, as in anamniotes. We propose that the amniote primitive streak evolved from the ancestral blastopore by acquisition of an additional medio-lateral intercalation event, preceding gastrulation and acting independently of mesendoderm formation to position the primitive streak at the midline.
Development | 2007
Fabrice Lavial; Hervé Acloque; Federica Bertocchini; David J. MacLeod; Sharon Boast; Elodie Bachelard; Guillaume Montillet; Sandrine Thenot; Helen Sang; Claudio D. Stern; Jacques Samarut; Bertrand Pain
Embryonic stem cells (ESC) have been isolated from pregastrulation mammalian embryos. The maintenance of their pluripotency and ability to self-renew has been shown to be governed by the transcription factors Oct4 (Pou5f1) and Nanog. Oct4 appears to control cell-fate decisions of ESC in vitro and the choice between embryonic and trophectoderm cell fates in vivo. In non-mammalian vertebrates, the existence and functions of these factors are still under debate, although the identification of the zebrafish pou2 (spg; pou5f1) and Xenopus Pou91 (XlPou91) genes, which have important roles in maintaining uncommitted putative stem cell populations during early development, has suggested that these factors have common functions in all vertebrates. Using chicken ESC (cESC), which display similar properties of pluripotency and long-term self-renewal to mammalian ESC, we demonstrated the existence of an avian homologue of Oct4 that we call chicken PouV (cPouV). We established that cPouV and the chicken Nanog gene are required for the maintenance of pluripotency and self-renewal of cESC. These findings show that the mechanisms by which Oct4 and Nanog regulate pluripotency and self-renewal are not exclusive to mammals.
The EMBO Journal | 1999
Detlef Balschun; David P. Wolfer; Federica Bertocchini; Virginia Barone; Antonio Conti; Werner Zuschratter; Ludwig Missiaen; Hans-Peter Lipp; J. Uwe Frey; Vincenzo Sorrentino
Deletion of the ryanodine receptor type 3 (RyR3) results in specific changes in hippocampal synaptic plasticity, without affecting hippocampal morphology, basal synaptic transmission or presynaptic function. Robust long‐term potentiation (LTP) induced by repeated, strong tetanization in the CA1 region and in the dentate gyrus was unaltered in hippocampal slices in vitro, whereas weak forms of plasticity generated by either a single weak tetanization or depotentiation of a robust LTP were impaired. These distinct physiological deficits were paralleled by a reduced flexibility in re‐learning a new target in the water‐maze. In contrast, learning performance in the acquisition phase and during probe trial did not differ between the mutants and their wild‐type littermates. In the open‐field, RyR3−/− mice displayed a normal exploration and habituation, but had an increased speed of locomotion and a mild tendency to circular running. The observed physiological and behavioral effects implicate RyR3‐mediated Ca2+ release in the intracellular processes underlying spatial learning and hippocampal synaptic plasticity.
The EMBO Journal | 1997
Federica Bertocchini; Catherine E. Ovitt; Antonio Conti; Virginia Barone; Hans R. Schöler; Roberto Bottinelli; Carlo Reggiani; Vincenzo Sorrentino
The skeletal isoform of Ca2+ release channel, RyR1, plays a central role in activation of skeletal muscle contraction. Another isoform, RyR3, has been observed recently in some mammalian skeletal muscles, but whether it participates in regulating skeletal muscle contraction is not known. The expression of RyR3 in skeletal muscles was studied in mice from late fetal stages to adult life. RyR3 was found to be expressed widely in murine skeletal muscles during the post‐natal phase of muscle development, but was not detectable in muscles of adult mice, with the exception of the diaphragm and soleus muscles. RyR3 knockout mice were generated, and it was shown that skeletal muscle contraction in these mice was impaired during the first weeks after birth. In skeletal muscles isolated from newborn RyR3−/− mice, but not in those from adult mice, the twitch elicited by electrical stimulation and the contracture induced by caffeine were strongly depressed. These results provide the first evidence that RyR3 has a physiological role in excitation–contraction coupling of neonatal skeletal muscles. The disproportion between the low amount of RyR3 and the large impact of the RyR3 knockout suggests that this isoform contributes to the amplification of Ca2+ released by the existing population of ryanodine receptors (RyR1).
Developmental Cell | 2002
Federica Bertocchini; Claudio D. Stern
The hypoblast (equivalent to the mouse anterior visceral endoderm) of the chick embryo plays a role in regulating embryonic polarity. Surprisingly, hypoblast removal causes multiple embryonic axes to form, suggesting that it emits an inhibitor of axis formation. We show that Cerberus (a multifunctional antagonist of Nodal, Wnt, and BMP signaling) is produced by the hypoblast and inhibits primitive streak formation. This activity is mimicked by Cerberus-Short (CerS), which only inhibits Nodal. Nodal misexpression can initiate an ectopic primitive streak, but only when the hypoblast is removed. We propose that, during normal development, the primitive streak forms only when the hypoblast is displaced away from the posterior margin by the endoblast, which lacks Cerberus.
The EMBO Journal | 1998
Alois Sonnleitner; Antonio Conti; Federica Bertocchini; Hansgeorg Schindler; Vincenzo Sorrentino
Single‐channel analysis of sarcoplasmic reticulum vesicles prepared from diaphragm muscle, which contains both RyR1 and RyR3 isoforms, revealed the presence of two functionally distinct ryanodine receptor calcium release channels. In addition to channels with properties typical of RyR1 channels, a second population of ryanodine‐sensitive channels with properties distinct from those of RyR1 channels was observed. The novel channels displayed close‐to‐zero open‐probability at nanomolar Ca2+ concentrations in the presence of 1 mM ATP, but were shifted to the open conformation by increasing Ca2+ to micromolar levels and were not inhibited at higher Ca2+ concentrations. These novel channels were sensitive to the stimulatory effects of cyclic adenosine 5′‐diphosphoribose (cADPR). Detection of this second population of RyR channels in lipid bilayers was always associated with the presence of the RyR3 isoform in muscle preparations used for single‐channel measurements and was abrogated by the knockout of the RyR3 gene in mice. Based on the above, we associated the novel population of channels with the RyR3 isoform of Ca2+ release channels. The functional properties of the RyR3 channels are in agreement with a potential qualitative contribution of this channel to Ca2+ release in skeletal muscle and in other tissues.
Development | 2004
Federica Bertocchini; Isaac Skromne; Lewis Wolpert; Claudio D. Stern
Avian embryos have a remarkable capacity to regulate: when a pre-primitive streak stage embryo is cut into fragments, each fragment can spontaneously initiate formation of a complete embryonic axis. We investigate the signalling pathways that initiate primitive streak formation and the mechanisms that ensure that only a single axis normally forms. As reported previously, an ectopic primitive streak can be induced by misexpression of Vg1 in the marginal zone. We now show that Vg1 induces an inhibitor that travels across the embryo (3 mm distance) in less than 6 hours. We provide evidence that this inhibitor acts early in the cascade of events downstream of Vg1. We also show that FGF signalling is required for primitive streak formation, in cooperation with Nodal and Chordin. We suggest that three sequential inhibitory steps ensure that a single axis develops in the normal embryo: an early inhibitor that spreads throughout the embryo (which can be induced by Vg1), a second inhibition by Cerberus from the underlying hypoblast, and finally a late inhibition from Lefty emitted by the primitive streak itself.
FEBS Letters | 1998
Virginia Barone; Federica Bertocchini; Roberto Bottinelli; Feliciano Protasi; Paul D. Allen; Clara Franzini Armstrong; Carlo Reggiani; Vincenzo Sorrentino
Skeletal muscle contraction is triggered by the release of Ca2+ from the sarcoplasmic reticulum through the type 1 ryanodine receptor (RyR1). Recently it has been shown that also the type 3 isoform of ryanodine receptor (RyR3), which is expressed in some mammalian skeletal muscles, may participate in the regulation of skeletal muscle contraction. Here we report the generation and the characterization of double mutant mice carrying a targeted disruption of both the RyR1 and the RyR3 genes (RyR1−/−;RyR3−/−). Skeletal muscles from mice homozygous for both mutations are unable to contract in response to caffeine and to ryanodine. In addition, they show a very poor capability to develop tension when directly activated with micromolar [Ca2+]i after membrane permeabilization which indicates either poor development or degeneration of the myofibrils. This was confirmed by biochemical analysis of contractile proteins. Electron microscopy confirms small size of myofibrils and shows complete absence of feet (RyRs) in the junctional SR.
Disease Models & Mechanisms | 2011
Carlos Garrido-Allepuz; Endika Haro; Domingo González-Lamuño; María Luisa Martínez-Frías; Federica Bertocchini; Maria A. Ros
Sirenomelia, also known as sirenomelia sequence, is a severe malformation of the lower body characterized by fusion of the legs and a variable combination of visceral abnormalities. The causes of this malformation remain unknown, although the discovery that it can have a genetic basis in mice represents an important step towards the understanding of its pathogenesis. Sirenomelia occurs in mice lacking Cyp26a1, an enzyme that degrades retinoic acid (RA), and in mice that develop with reduced bone morphogenetic protein (Bmp) signaling in the caudal embryonic region. The phenotypes of these mutant mice suggest that sirenomelia in humans is associated with an excess of RA signaling and a deficit in Bmp signaling in the caudal body. Clinical studies of sirenomelia have given rise to two main pathogenic hypotheses. The first hypothesis, based on the aberrant abdominal and umbilical vascular pattern of affected individuals, postulates a primary vascular defect that leaves the caudal part of the embryo hypoperfused. The second hypothesis, based on the overall malformation of the caudal body, postulates a primary defect in the generation of the mesoderm. This review gathers experimental and clinical information on sirenomelia together with the necessary background to understand how deviations from normal development of the caudal part of the embryo might lead to this multisystemic malformation.
The Journal of Physiology | 1998
B. Dietze; Federica Bertocchini; Virginia Barone; A. Struk; Vincenzo Sorrentino; Werner Melzer
1 Primary cultured myotubes were derived from satellite cells of the diaphragm obtained from both normal mice (RyR3+/+) and mice with a targeted mutation eliminating expression of the type 3 isoform of the ryanodine receptor (RyR3−/−). Using the whole‐cell patch clamp technique, L‐type Ca2+ currents were measured during step depolarizations. Simultaneously, intracellular Ca2+ transients were recorded with the fluorescent indicator dye fura‐2. 2 After correction for non‐instantaneous binding of Ca2+ to the indicator dye and taking into account the dynamics of Ca2+ binding to intracellular constituents, an estimate of the time course of the Ca2+ release rate from the sarcoplasmic reticulum (SR) was obtained. 3 The calculated SR Ca2+ release flux exhibited a marked peak within less than 12 ms after the onset of the voltage‐clamp depolarization and fell rapidly thereafter to a five times lower, almost steady level. It declined rapidly after termination of the depolarization. 4 Signals in normal and RyR3‐deficient myotubes showed no significant difference in the activation of Ca2+ conductance and in amplitude, time course and voltage dependence of the Ca2+ efflux from the SR. 5 In conclusion, the characteristics of voltage‐controlled Ca2+ release reported here are similar to those of mature mammalian muscle fibres. In contrast to differences observed in the contractile properties of RyR3‐deficient muscle fibres, a contribution of RyR3 to excitation‐contraction coupling could not be detected in myotubes.