Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Federica Boraldi is active.

Publication


Featured researches published by Federica Boraldi.


Laboratory Investigation | 2007

Matrix Gla protein is involved in elastic fiber calcification in the dermis of pseudoxanthoma elasticum patients

Dealba Gheduzzi; Federica Boraldi; Giulia Annovi; Chiara Paolinelli Devincenzi; Leon J. Schurgers; Cees Vermeer; Daniela Quaglino; Ivonne Pasquali Ronchetti

Mature MGP (Matrix γ-carboxyglutamic acid protein) is known to inhibit soft connective tissues calcification. We investigated its possible involvement in pseudoxanthoma elasticum (PXE), a genetic disorder whose clinical manifestations are due to mineralization of elastic fibers. PXE patients have lower serum concentration of total MGP compared to controls (P<0.001). Antibodies specific for the noncarboxylated (Glu-MGP) and for the γ-carboxylated (Gla-MGP) forms of MGP were assayed on ultrathin sections of dermis from controls and PXE patients. Normal elastic fibers in controls and patients were slightly positive for both forms of MGP, whereas Gla-MGP was more abundant within controls than within patients elastic fibers (P<0.001). In patients calcified elastic fibers, Glu-MGP intensively colocalized with mineral precipitates, whereas Gla-MGP precisely localized at the mineralization front. Data suggest that MGP is present within elastic fibers and is associated with calcification of dermal elastic fibers in PXE. To investigate whether local cells produce MGP, dermal fibroblasts were cultured in vitro and MGP was assayed at mRNA and protein levels. In spite of very similar MGP mRNA expression, cells from PXE patients produced 30% less of Gla-MGP compared to controls. Data were confirmed by immunocytochemistry on ultrathin sections. Normal fibroblasts in vitro were positive for both forms of MGP. PXE fibroblasts were positive for Glu-MGP and only barely positive for Gla-MGP (P<0.001). In conclusion, MGP is involved in elastic fiber calcification in PXE. The lower ratio of Gla-MGP over Glu-MGP in pathological fibroblasts compared to controls suggests these cells may play an important role in the ectopic calcification in PXE.


Biochimica et Biophysica Acta | 2000

Abnormal phenotype of in vitro dermal fibroblasts from patients with Pseudoxanthoma elasticum (PXE).

Daniela Quaglino; Federica Boraldi; D Barbieri; Antonietta Croce; Roberta Tiozzo; I. Pasquali Ronchetti

Pseudoxanthoma elasticum (PXE) is a genetic connective tissue disease, whose gene and pathogenesis are still unknown. Dermal fibroblasts from patients affected by PXE have been compared in vitro with fibroblasts taken from sex and age-matched normal individuals. Cells were grown and investigated in monolayer, into three-dimensional collagen gels and in suspension. Compared with normal cells, PXE fibroblasts cultured in monolayer entered more rapidly within the S phase and exhibited an increased proliferation index; on the contrary, similarly to normal fibroblasts, PXE cells did not grow in suspension. Furthermore, compared with normal fibroblasts, PXE cells exhibited lower efficiency in retracting collagen type I lattices and lower adhesion properties to collagen type I and to plasma fibronectin. This behavior was associated with higher expression of integrin subunits alpha2, alpha5, alphav, whereas beta1 subunit as well as alpha2beta1 and alpha5beta1 integrin expression was lower than in controls. Compared to controls, PXE fibroblasts had higher CAM protein expression in accordance with their high tendency to form cellular aggregates, when kept in suspension. The demonstration that PXE fibroblasts have altered cell-cell and cell-matrix interactions, associated with modified proliferation capabilities, is consistent with the hypothesis that the gene responsible for PXE might have a broad regulatory role on the cellular machinery.


The Journal of Pathology | 2006

Oxidative stress in fibroblasts from patients with pseudoxanthoma elasticum: possible role in the pathogenesis of clinical manifestations†

Ivonne Pasquali-Ronchetti; María García-Fernández; Federica Boraldi; Daniela Quaglino; Dealba Gheduzzi; Chiara Devincenzi Paolinelli; Roberta Tiozzo; Stefania Bergamini; Daniela Ceccarelli; Umberto Muscatello

Pseudoxanthoma elasticum (PXE) is a genetic disease characterized by calcification and fragmentation of elastic fibres of the skin, cardiovascular system and eye, caused by mutations of the ABCC6 gene, which encodes the membrane transporter MRP6. The pathogenesis of the lesions is unknown. Based on studies of similar clinical and histopathological damage present in haemolytic disorders, our working hypothesis is that PXE lesions may result from chronic oxidative stress occurring in PXE cells as a consequence of MRP6 deficiency. Our results show that PXE fibroblasts suffer from mild chronic oxidative stress due to the imbalance between production and degradation of oxidant species. The findings also show that this imbalance results, at least in part, from the loss of mitochondrial membrane potential (ΔΨm) with overproduction of H2O2. Whether mitochondrial dysfunction is the main factor responsible for the oxidative stress in PXE cells remains to be elucidated. However, mild chronic generalized oxidative stress could explain the great majority of structural and biochemical alterations already reported in PXE. Copyright


Histochemistry and Cell Biology | 2008

A long-term study on female mice fed on a genetically modified soybean: effects on liver ageing

Manuela Malatesta; Federica Boraldi; Giulia Annovi; Beatrice Baldelli; Serafina Battistelli; Marco Biggiogera; Daniela Quaglino

Liver represents a suitable model for monitoring the effects of a diet, due to its key role in controlling the whole metabolism. Although no direct evidence has been reported so far that genetically modified (GM) food may affect health, previous studies on hepatocytes from young female mice fed on GM soybean demonstrated nuclear modifications involving transcription and splicing pathways. In this study, the effects of this diet were studied on liver of old female mice in order to elucidate possible interference with ageing. The morpho-functional characteristics of the liver of 24-month-old mice, fed from weaning on control or GM soybean, were investigated by combining a proteomic approach with ultrastructural, morphometrical and immunoelectron microscopical analyses. Several proteins belonging to hepatocyte metabolism, stress response, calcium signalling and mitochondria were differentially expressed in GM-fed mice, indicating a more marked expression of senescence markers in comparison to controls. Moreover, hepatocytes of GM-fed mice showed mitochondrial and nuclear modifications indicative of reduced metabolic rate. This study demonstrates that GM soybean intake can influence some liver features during ageing and, although the mechanisms remain unknown, underlines the importance to investigate the long-term consequences of GM-diets and the potential synergistic effects with ageing, xenobiotics and/or stress conditions.


FEBS Letters | 1999

Coordinate changes of polyamine metabolism regulatory proteins during the cell cycle of normal human dermal fibroblasts

S. Bettuzzi; Pierpaola Davalli; Serenella Astancolle; C. Pinna; R. Roncaglia; Federica Boraldi; Roberta Tiozzo; M. Sharrard; Arnaldo Corti

In human dermal fibroblasts, brought to quiescence (G0) by serum starvation, the S phase peaked 24 h and G2/M phases 36 h after serum re‐addition. Under the same conditions, ornithine decarboxylase mRNA peaked at 12 h, decreased markedly in S phase and remained low until 48 h. Conversely, ornithine decarboxylase antizyme transcript dropped to its lowest level at 12 h, while reaching its highest values between 24 and 48 h. Ornithine decarboxylase activity followed essentially the pattern of its mRNA, but relative changes were much greater. S‐Adenosylmethionine decarboxylase transcript and enzyme activity also peaked at around 12 h, decreasing thereafter. Spermidine/spermine N 1‐acetyltransferase mRNA and activity reached the highest values at 36–48 h. Putrescine concentration increased up to 18 h and fell dramatically in the S phase, remaining low thereafter. Both spermidine and spermine reached peaks at 18 h and decreased in the S phase, but not nearly as much as putrescine. We discuss how this comprehensive study may help to understand the involvement of polyamines in the control of cell proliferation.


Frontiers in Genetics | 2013

Fibroblast involvement in soft connective tissue calcification

Ivonne Pasquali Ronchetti; Federica Boraldi; Giulia Annovi; Paolo Cianciulli; Daniela Quaglino

Soft connective tissue calcification is not a passive process, but the consequence of metabolic changes of local mesenchymal cells that, depending on both genetic and environmental factors, alter the balance between pro- and anti-calcifying pathways. While the role of smooth muscle cells and pericytes in ectopic calcifications has been widely investigated, the involvement of fibroblasts is still elusive. Fibroblasts isolated from the dermis of pseudoxanthoma elasticum (PXE) patients and of patients exhibiting PXE-like clinical and histopathological findings offer an attractive model to investigate the mechanisms leading to the precipitation of mineral deposits within elastic fibers and to explore the influence of the genetic background and of the extracellular environment on fibroblast-associated calcifications, thus improving the knowledge on the role of mesenchymal cells on pathologic mineralization.


British Journal of Dermatology | 1996

Ultrastructural and morphometrical evaluations on normal human dermal connective tissue – the influence of age, sex and body region

Daniela Quaglino; G. Bergamini; Federica Boraldi; I. Pasquali Ronchetti

In order to give detailed structural and quantitative evaluations for some of the most important dermal constituents such as collagen, elastic fibres and mesenchymal cells, and for the non–structured extracellular matrix, we performed ultrastructural investigations on dermal biopsies from 50 healthy Caucasian subjects aged from 6 fetal months to 83 years. Striking changes were observed, mainly in the perinatal period, for collagen, elastin and mesenchymal cells and. after 50 years of age, for collagen and elaslin. Only slight or negligible differences were noted between males and females and in skin specimens taken from different parts of the body but similarly exposed to environmental factors (i.e. UV radiation). Modifications of the non–structured extracellular matrix appeared to be the consequence of changes affecting the other components. The results, therefore. emphasize the importance of the ageing factor in connective tissue metabolism and give further information on both qualitative and quantitative characteristics of normal human dermis.


Tissue & Cell | 2003

Cell–matrix interactions of in vitro human skin fibroblasts upon addition of hyaluronan

Federica Boraldi; Maria Antonietta Croce; Daniela Quaglino; Rita Sammarco; Elena Carnevali; Roberta Tiozzo; Ivonne Pasquali-Ronchetti

Normal human skin fibroblasts were grown in a three-dimensional collagen gel or in monolayer in the presence or absence of high molecular weight hyaluronan (HA) to assess the influence of extracellular HA on cell-matrix interactions. HA incorporated into the collagen gel or added to the culture medium did not modify lattice retraction with time. The effect was independent from HA molecular weight (from 7.5 x 10(5) to 2.7 x 10(6) Da) and concentration (from 0.1 up to 1 mg/ml). HA did not affect shape and distribution of fibroblasts within the gel, whereas it induced the actin filaments to organise into thicker cables running underneath the plasma membrane. The same phenomenon was observed in fibroblasts grown in monolayer. By contrast, vimentin cytoskeleton and cell-substrate focal adhesions were not modified by exogenous HA. The number of fibroblasts attached to HA-coated dishes was always significantly lower compared to plastic and to collagen type I-coated plates. By contrast, adhesion was not affected by soluble HA added to the medium nor by anti-CD44 and anti-RHAMM-IHABP polyclonals. After 24-h seeding on collagen type I or on plastic, cells were large and spread. Conversely, cells adherent to HA-coated surfaces were long, thin and aligned into rows; alcian blue showed that cells were attached to the plastic in between HA bundles. Therefore, normal human skin fibroblasts exhibit very scarce, if any, adhesion to matrix HA, either soluble or immobilised. Moreover, even at high concentration, HA molecules do not exert any visco-mechanical effect on lattice retraction and do not interfere with fibroblast-collagen interactions nor with focal adhesion contacts of fibroblasts with the substrate. This is probably relevant in organogenesis and wound repair. By contrast, HA greatly modifies the organisation of the actin cytoskeleton, suggesting that CD44-mediated signal transduction by HA may affect cell locomotion and orientation, as indicated by the fusiform shape of fibroblasts grown in the presence of immobilised HA. A role of HA in cell orientation could be relevant for the deposition of collagen fibrils in regeneration and tissue remodelling.


Biochimica et Biophysica Acta | 2008

Parameters of oxidative stress are present in the circulation of PXE patients

María García-Fernández; Dealba Gheduzzi; Federica Boraldi; Chiara Devincenzi Paolinelli; Purification Sanchez; Pedro Valdivielso; Maria Josè Morilla; Daniela Quaglino; Deanna Guerra; Sara Casolari; Lionel Bercovitch; Ivonne Pasquali-Ronchetti

Pseudoxanthoma elasticum (PXE) is an inherited disorder characterized by calcification of elastic fibres leading to dermatological and vascular alterations associated to premature aged features and to life threatening clinical manifestations. The severity of the disease is independent from the type of mutation in the ABCC6 gene, and it has been suggested that local and/or systemic factors may contribute to the occurrence of clinical phenotype. The redox balance in the circulation of 27 PXE patients and of 50 healthy subjects of comparable age was evaluated by measuring the advanced oxidation protein products (AOPP), the lipid peroxidation derivatives (LOOH), the circulating total antioxidant status (TAS), the thiol content and the extracellular superoxide dismutase activity (EC-SOD). Patients were diagnosed by clinical, ultrastructural and molecular findings. Compared to control subjects, PXE patients exhibited significantly lower antioxidant potential, namely circulating TAS and free thiol groups, and higher levels of parameters of oxidative damage, as LOOH and of AOPP, and of circulating EC-SOD activity. Interestingly, the ratio between oxidant and antioxidant parameters was significantly altered in PXE patients and related to various score indices. This study demonstrates, for the first time, that several parameters of oxidative stress are modified in the blood of PXE patients and that the redox balance is significantly altered compared to control subjects of comparable age. Therefore, in PXE patients the circulating impaired redox balance may contribute to the occurrence of several clinical manifestations in PXE patients, and/or to the severity of disease, thus opening new perspectives for their management.


Proteomics Clinical Applications | 2009

Fibroblast protein profile analysis highlights the role of oxidative stress and vitamin K recycling in the pathogenesis of pseudoxanthoma elasticum

Federica Boraldi; Giulia Annovi; Deanna Guerra; Chiara Paolinelli Devincenzi; María García-Fernández; Fulvio Panico; Giorgio De Santis; Roberta Tiozzo; Ivonne Pasquali Ronchetti; Daniela Quaglino

Pseudoxanthoma elasticum (PXE) is a genetic disorder associated to mutations in the ABCC6 gene; however, the pathogenetic mechanisms leading to elastic fibre calcifications and to clinical manifestations are still unknown. Dermal fibroblasts, directly involved in the production of the extracellular milieu, have been isolated from healthy subjects and from patients affected by PXE, cultured in vitro and characterized for their ability to produce reactive oxygen species, for structural and functional properties of their cell membranes, for changes in their protein profile. Data demonstrate that oxidative stress has profound and endurable consequences on PXE fibroblast phenotype being responsible for: reduced levels of global DNA methylation, increased amount of carbonylated proteins and of lipid peroxidation products, altered structural properties of cell membranes, modified protein expression. Data shed new light on the pathogenetic pathways in PXE, by identifying a network of proteins affecting elastic fibre calcification through inefficient vitamin K recycling, and highlight the role of differentially expressed proteins as targets for validating the efficacy of future therapeutic strategies aiming to delay and/or revert the pathologic phenotype of PXE fibroblasts. Moreover, data open new perspectives for investigating PXE‐like phenotypes in the absence of ABCC6 mutations.

Collaboration


Dive into the Federica Boraldi's collaboration.

Top Co-Authors

Avatar

Daniela Quaglino

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Roberta Tiozzo

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Giulia Annovi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Ivonne Pasquali Ronchetti

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Dealba Gheduzzi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Deanna Guerra

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivonne Pasquali-Ronchetti

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Andrea Cossarizza

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Angelica Bartolomeo

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge