Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Federica Cattonaro is active.

Publication


Featured researches published by Federica Cattonaro.


Nature | 2007

The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla

Olivier Jaillon; Jean-Marc Aury; Benjamin Noel; Alberto Policriti; Christian Clepet; Alberto Casagrande; Nathalie Choisne; Sébastien Aubourg; Nicola Vitulo; Claire Jubin; Alessandro Vezzi; Fabrice Legeai; Philippe Hugueney; Corinne Dasilva; David S. Horner; Erica Mica; Delphine Jublot; Julie Poulain; Clémence Bruyère; Alain Billault; Béatrice Segurens; Michel Gouyvenoux; Edgardo Ugarte; Federica Cattonaro; Véronique Anthouard; Virginie Vico; Cristian Del Fabbro; Michael Alaux; Gabriele Di Gaspero; Vincent Dumas

The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.


Nature | 2012

A physical, genetic and functional sequence assembly of the barley genome

Klaus F. X. Mayer; Robbie Waugh; Peter Langridge; Timothy J. Close; Roger P. Wise; Andreas Graner; Takashi Matsumoto; Kazuhiro Sato; Alan H. Schulman; Ruvini Ariyadasa; Daniela Schulte; Naser Poursarebani; Ruonan Zhou; Burkhard Steuernagel; Martin Mascher; Uwe Scholz; Bu-Jun Shi; Kavitha Madishetty; Jan T. Svensson; Prasanna R. Bhat; Matthew J. Moscou; Josh Resnik; Gary J. Muehlbauer; Peter E. Hedley; Hui Liu; Jenny Morris; Zeev Frenkel; Avraham Korol; Hélène Bergès; Marius Felder

Barley (Hordeum vulgare L.) is among the world’s earliest domesticated and most important crop plants. It is diploid with a large haploid genome of 5.1 gigabases (Gb). Here we present an integrated and ordered physical, genetic and functional sequence resource that describes the barley gene-space in a structured whole-genome context. We developed a physical map of 4.98 Gb, with more than 3.90 Gb anchored to a high-resolution genetic map. Projecting a deep whole-genome shotgun assembly, complementary DNA and deep RNA sequence data onto this framework supports 79,379 transcript clusters, including 26,159 ‘high-confidence’ genes with homology support from other plant genomes. Abundant alternative splicing, premature termination codons and novel transcriptionally active regions suggest that post-transcriptional processing forms an important regulatory layer. Survey sequences from diverse accessions reveal a landscape of extensive single-nucleotide variation. Our data provide a platform for both genome-assisted research and enabling contemporary crop improvement.


Nature Genetics | 2013

The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution

Ignazio Verde; A. G. Abbott; Simone Scalabrin; Sook Jung; Shengqiang Shu; Fabio Marroni; Tatyana Zhebentyayeva; Maria Teresa Dettori; Jane Grimwood; Federica Cattonaro; Andrea Zuccolo; Laura Rossini; Jerry Jenkins; Elisa Vendramin; Lee Meisel; Véronique Decroocq; Bryon Sosinski; Simon Prochnik; Therese Mitros; Alberto Policriti; Guido Cipriani; L. Dondini; Stephen P. Ficklin; David Goodstein; Pengfei Xuan; Cristian Del Fabbro; Valeria Aramini; Dario Copetti; Susana González; David S. Horner

Rosaceae is the most important fruit-producing clade, and its key commercially relevant genera (Fragaria, Rosa, Rubus and Prunus) show broadly diverse growth habits, fruit types and compact diploid genomes. Peach, a diploid Prunus species, is one of the best genetically characterized deciduous trees. Here we describe the high-quality genome sequence of peach obtained from a completely homozygous genotype. We obtained a complete chromosome-scale assembly using Sanger whole-genome shotgun methods. We predicted 27,852 protein-coding genes, as well as noncoding RNAs. We investigated the path of peach domestication through whole-genome resequencing of 14 Prunus accessions. The analyses suggest major genetic bottlenecks that have substantially shaped peach genome diversity. Furthermore, comparative analyses showed that peach has not undergone recent whole-genome duplication, and even though the ancestral triplicated blocks in peach are fragmentary compared to those in grape, all seven paleosets of paralogs from the putative paleoancestor are detectable.


Plant Physiology | 2011

A 3,000-Loci Transcription Map of Chromosome 3B Unravels the Structural and Functional Features of Gene Islands in Hexaploid Wheat

Camille Rustenholz; Frédéric Choulet; Christel Laugier; Jan Šafář; Hana Šimková; Jaroslav Doležel; Federica Magni; Simone Scalabrin; Federica Cattonaro; Sonia Vautrin; Arnaud Bellec; Hélène Bergès; Catherine Feuillet; Etienne Paux

To improve our understanding of the organization and regulation of the wheat (Triticum aestivum) gene space, we established a transcription map of a wheat chromosome (3B) by hybridizing a newly developed wheat expression microarray with bacterial artificial chromosome pools from a new version of the 3B physical map as well as with cDNA probes derived from 15 RNA samples. Mapping data for almost 3,000 genes showed that the gene space spans the whole chromosome 3B with a 2-fold increase of gene density toward the telomeres due to an increase in the number of genes in islands. Comparative analyses with rice (Oryza sativa) and Brachypodium distachyon revealed that these gene islands are composed mainly of genes likely originating from interchromosomal gene duplications. Gene Ontology and expression profile analyses for the 3,000 genes located along the chromosome revealed that the gene islands are enriched significantly in genes sharing the same function or expression profile, thereby suggesting that genes in islands acquired shared regulation during evolution. Only a small fraction of these clusters of cofunctional and coexpressed genes was conserved with rice and B. distachyon, indicating a recent origin. Finally, genes with the same expression profiles in remote islands (coregulation islands) were identified suggesting long-distance regulation of gene expression along the chromosomes in wheat.


Plant Journal | 2011

Large-scale detection of rare variants via pooled multiplexed next-generation sequencing: towards next-generation Ecotilling

Fabio Marroni; Sara Pinosio; Eleonora Di Centa; Irena Jurman; Wout Boerjan; Nicoletta Felice; Federica Cattonaro; Michele Morgante

Common variants, such as those identified by genome-wide association scans, explain only a small proportion of trait variation. Growing evidence suggests that rare functional variants, which are usually missed by genome-wide association scans, play an important role in determining the phenotype. We used pooled multiplexed next-generation sequencing and a customized analysis workflow to detect mutations in five candidate genes for lignin biosynthesis in 768 pooled Populus nigra accessions. We identified a total of 36 non-synonymous single nucleotide polymorphisms, one of which causes a premature stop codon. The most common variant was estimated to be present in 672 of the 1536 tested chromosomes, while the rarest was estimated to occur only once in 1536 chromosomes. Comparison with individual Sanger sequencing in a selected sub-sample confirmed that variants are identified with high sensitivity and specificity, and that the variant frequency was estimated accurately. This proposed method for identification of rare polymorphisms allows accurate detection of variation in many individuals, and is cost-effective compared to individual sequencing.


The Plant Genome | 2015

Physical Mapping of Bread Wheat Chromosome 5A: An Integrated Approach

Delfina Barabaschi; Federica Magni; Andrea Volante; Agata Gadaleta; Hana Šimková; Simone Scalabrin; Maria Lucia Prazzoli; Paolo Bagnaresi; Katia Lacrima; Vania Michelotti; Francesca Desiderio; Luigi Orrù; Valentina Mazzamurro; Agostino Fricano; A. M. Mastrangelo; Paola Tononi; Nicola Vitulo; Irena Jurman; Zeev Frenkel; Federica Cattonaro; Michele Morgante; Antonio Blanco; Jaroslav Doležel; Massimo Delledonne; Antonio Michele Stanca; Luigi Cattivelli; Giampiero Valè

The huge size, redundancy, and highly repetitive nature of the bread wheat [Triticum aestivum (L.)] genome, makes it among the most difficult species to be sequenced. To overcome these limitations, a strategy based on the separation of individual chromosomes or chromosome arms and the subsequent production of physical maps was established within the frame of the International Wheat Genome Sequence Consortium (IWGSC). A total of 95,812 bacterial artificial chromosome (BAC) clones of short‐arm chromosome 5A (5AS) and long‐arm chromosome 5A (5AL) arm‐specific BAC libraries were fingerprinted and assembled into contigs by complementary analytical approaches based on the FingerPrinted Contig (FPC) and Linear Topological Contig (LTC) tools. Combined anchoring approaches based on polymerase chain reaction (PCR) marker screening, microarray, and sequence homology searches applied to several genomic tools (i.e., genetic maps, deletion bin map, neighbor maps, BAC end sequences (BESs), genome zipper, and chromosome survey sequences) allowed the development of a high‐quality physical map with an anchored physical coverage of 75% for 5AS and 53% for 5AL with high portions (64 and 48%, respectively) of contigs ordered along the chromosome. In the genome of grasses, Brachypodium [Brachypodium distachyon (L.) Beauv.], rice (Oryza sativa L.), and sorghum [Sorghum bicolor (L.) Moench] homologs of genes on wheat chromosome 5A were separated into syntenic blocks on different chromosomes as a result of translocations and inversions during evolution. The physical map presented represents an essential resource for fine genetic mapping and map‐based cloning of agronomically relevant traits and a reference for the 5A sequencing projects.


Tree Genetics & Genomes | 2011

Nucleotide diversity and linkage disequilibrium in Populus nigra cinnamyl alcohol dehydrogenase (CAD4) gene

Fabio Marroni; Sara Pinosio; Giusi Zaina; Nicoletta Felice; Federica Cattonaro; Michele Morgante

Cinnamyl alcohol dehydrogenase (CAD) is involved in the biosynthesis of lignin, a component of plant cell wall which negatively impacts paper pulp processing and biomass fermentation to ethanol. Transgenic poplars with depressed CAD activity show structural alterations of lignin. Natural CAD mutants have been identified in several plants; however, no natural CAD mutants have been identified in poplar. We surveyed the natural genetic variation in CAD4, a gene coding for CAD, in 360 poplar trees from Western Europe. We measured linkage disequilibrium (LD) between single-nucleotide polymorphisms (SNPs), performed neutrality tests and estimated diversity indexes, and investigated their dependence from sample size. We identified 45 SNPs, six of which caused an amino acid substitution. Our results suggest a short span of LD in Populus nigra CAD4 gene. We identified carriers of different nonsynonymous SNPs in CAD4; those subjects are candidate to be used in classical breeding programs to obtain carriers of different combinations of functional polymorphisms. We showed that use of small sample size might lead to biased estimates of LD, neutrality tests, and diversity indexes.


Genome Biology | 2015

Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays.

Matteo Dell’Acqua; Daniel M. Gatti; Giorgio Pea; Federica Cattonaro; Frederik Coppens; Gabriele Magris; Aye L. Hlaing; Htay Htay Aung; Hilde Nelissen; Joke Baute; Elisabetta Frascaroli; Gary A. Churchill; Dirk Inzé; Michele Morgante; Mario Enrico Pè

BackgroundMaize (Zea mays) is a globally produced crop with broad genetic and phenotypic variation. New tools that improve our understanding of the genetic basis of quantitative traits are needed to guide predictive crop breeding. We have produced the first balanced multi-parental population in maize, a tool that provides high diversity and dense recombination events to allow routine quantitative trait loci (QTL) mapping in maize.ResultsWe produced 1,636 MAGIC maize recombinant inbred lines derived from eight genetically diverse founder lines. The characterization of 529 MAGIC maize lines shows that the population is a balanced, evenly differentiated mosaic of the eight founders, with mapping power and resolution strengthened by high minor allele frequencies and a fast decay of linkage disequilibrium. We show how MAGIC maize may find strong candidate genes by incorporating genome sequencing and transcriptomics data. We discuss three QTL for grain yield and three for flowering time, reporting candidate genes. Power simulations show that subsets of MAGIC maize might achieve high-power and high-definition QTL mapping.ConclusionsWe demonstrate MAGIC maize’s value in identifying the genetic bases of complex traits of agronomic relevance. The design of MAGIC maize allows the accumulation of sequencing and transcriptomics layers to guide the identification of candidate genes for a number of maize traits at different developmental stages. The characterization of the full MAGIC maize population will lead to higher power and definition in QTL mapping, and lay the basis for improved understanding of maize phenotypes, heterosis included. MAGIC maize is available to researchers.


Genome Biology | 2013

A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat

Romain Philippe; Etienne Paux; Isabelle Bertin; Pierre Sourdille; Frédéric Choulet; Christel Laugier; Hana Šimková; Jan Šafář; Arnaud Bellec; Sonia Vautrin; Zeev Frenkel; Federica Cattonaro; Federica Magni; Simone Scalabrin; Mihaela Martis; Klaus F. X. Mayer; Abraham B. Korol; Hélène Bergès; Jaroslav Doležel; Catherine Feuillet

BackgroundAs for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and hexaploid wheat genome, the International Wheat Genome Sequencing Consortium established a chromosome-based strategy that was validated by the construction of the physical map of chromosome 3B. Here, we present improved strategies for the construction of highly integrated and ordered wheat physical maps, using chromosome 1BL as a template, and illustrate their potential for evolutionary studies and map-based cloning.ResultsUsing a combination of novel high throughput marker assays and an assembly program, we developed a high quality physical map representing 93% of wheat chromosome 1BL, anchored and ordered with 5,489 markers including 1,161 genes. Analysis of the gene space organization and evolution revealed that gene distribution and conservation along the chromosome results from the superimposition of the ancestral grass and recent wheat evolutionary patterns, leading to a peak of synteny in the central part of the chromosome arm and an increased density of non-collinear genes towards the telomere. With a density of about 11 markers per Mb, the 1BL physical map provides 916 markers, including 193 genes, for fine mapping the 40 QTLs mapped on this chromosome.ConclusionsHere, we demonstrate that high marker density physical maps can be developed in complex genomes such as wheat to accelerate map-based cloning, gain new insights into genome evolution, and provide a foundation for reference sequencing.


Genome Biology | 2013

The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution

Dina Raats; Zeev Frenkel; Tamar Krugman; Itay Dodek; Hanan Sela; Hana Šimková; Federica Magni; Federica Cattonaro; Sonia Vautrin; Hélène Bergès; Thomas Wicker; Beat Keller; Philippe Leroy; Romain Philippe; Etienne Paux; Jaroslav Doležel; Catherine Feuillet; Abraham B. Korol; Tzion Fahima

BackgroundThe wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution.ResultsFingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere.ConclusionsThis study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications.

Collaboration


Dive into the Federica Cattonaro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaroslav Doležel

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Hana Šimková

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hélène Bergès

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jan Šafář

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge