Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Federica Tramer is active.

Publication


Featured researches published by Federica Tramer.


Current Drug Metabolism | 2009

Bioavailability of Flavonoids: A Review of Their Membrane Transport and the Function of Bilitranslocase in Animal and Plant Organisms

Sabina Passamonti; Michela Terdoslavich; Raffaella Franca; Andreja Vanzo; Federica Tramer; Enrico Braidot; Elisa Petrussa; Angelo Vianello

Fruits and vegetables are rich in flavonoids, and ample epidemiological data show that diets rich in fruits and vegetables confer protection against cardiovascular, neurodegenerative and inflammatory diseases, and cancer. However, flavonoid bioavailability is reportedly very low in mammals and the molecular mechanisms of their action are still poorly known. This review focuses on membrane transport of flavonoids, a critical determinant of their bioavailability. Cellular influx and efflux transporters are reviewed for their involvement in the absorption of flavonoids from the gastro-intestinal tract and their subsequent tissue distribution. A focus on the mammalian bilirubin transporter bilitranslocase (TCDB 2.A.65.1.1) provides further insight into flavonoid bioavailability and its relationship with plasma bilirubin (an endogenous antioxidant). The general function of bilitranslocase as a flavonoid membrane transporter is further demonstrated by the occurrence of a plant homologue in organs (petals, berries) where flavonoid biosynthesis is most active. Bilitranslocase appears associated with sub-cellular membrane compartments and operates as a flavonoid membrane transporter.


Archives of Biochemistry and Biophysics | 2010

Oxidative stress-based cytotoxicity of delphinidin and cyanidin in colon cancer cells.

Jovana Čvorović; Federica Tramer; Marilena Granzotto; Luigi Candussio; Giuliana Decorti; Sabina Passamonti

Colorectal cancer is the second most frequent cause of cancer death in the western world. Although the prognosis has improved after the introduction of newer anticancer drugs, the treatment of metastatic colorectal cancer still remains a challenge due to a high percentage of drug-resistant tumor forms. We aimed at testing whether anthocyanidins exerted cytotoxicity in primary (Caco-2) and metastatic (LoVo and LoVo/ADR) colorectal cancer cell lines. Both cyanidin and delphinidin, though neither pelargonidin nor malvidin, were cytotoxic in metastatic cells only. The cell line most sensitive to anthocyanidins was the drug-resistant LoVo/ADR. There, cellular ROS accumulation, inhibition of glutathione reductase, and depletion of glutathione could be observed. This suggests that anthocyanidins may be used as sensitizing agents in metastatic colorectal cancer therapy.


Food Chemistry | 2012

Bilberry and blueberry anthocyanins act as powerful intracellular antioxidants in mammalian cells

Spela Moze Bornsek; Lovro Ziberna; Tomaz Polak; Andreja Vanzo; Nataša Poklar Ulrih; Veronika Abram; Federica Tramer; Sabina Passamonti

Berry anthocyanins have pronounced health effects, even though they have a low bioavailability. The common mechanism underlying health protection is believed to relate to antioxidant activity. Berry extracts, chemically characterised for their phenolic content, were prepared from bilberries (Vaccinium myrtillusL.) and blueberries (Vaccinium corymbosumL.); the bilberry extract was further purified to obtain the anthocyanin fraction. The antioxidant activity of each extract was examined at the cellular level. For this purpose a specific assay, known as cellular antioxidant activity assay (CAA), was implemented in different cell lines: human colon cancer (Caco-2), human hepatocarcinoma (HepG2), human endothelial (EA.hy926) and rat vascular smooth muscle (A7r5). Here we show for the first time that anthocyanins had intracellular antioxidant activity if applied at very low concentrations (<1 μg/l; nM range), thereby providing a long-sought rationale for their health protecting effects in spite of their unfavorable pharmacokinetic properties.


Contraception | 2002

Polyunsaturated fatty acids of germ cell membranes, glutathione and blutathione-dependent enzyme-PHGPx: From basic to clinic

Andrea Lenzi; L. Gandini; Francesco Lombardo; M. Picardo; V. Maresca; Enrico Panfili; Federica Tramer; Carla Boitani; F. Dondero

The lipid metabolism in sperm cells is important both for energy production and for cell structure. A special composition of membrane phospholipids, rich in polyunsaturated fatty acids (PUFA), and the different composition of sperm and immature germ cell membrane are described and discussed. Testis germ cells as well as epididymal maturing spermatozoa are endowed with enzymatic and non-enzymatic scavenger systems to prevent lipoperoxidative damage. Catalase, superoxide dismutase, and glutathione-dependent oxidoreductases are present in variable amounts in the different developmental stages. Phospholipid hydroperoxide glutathione peroxidase (PHGPx) activity and roles in caput and cauda epididymal sperm cells are discussed. Also seminal plasma has a highly specialized scavenger system that defends the sperm membrane against lipoperoxidation and the degree of PUFA insaturation acts to achieve the same goal. Systemic predisposition and a number of pathologies can lead to an anti-oxidant/pro-oxidant disequilibrium. Scavengers, such as glutathione can be used to treat these cases as they can restore the physiological constitution of PUFA in the cell membrane.


Cardiovascular Research | 2010

EXPRESSION OF BILITRANSLOCASE IN THE VASCULAR ENDOTHELIUM AND ITS FUNCTION AS A FLAVONOID TRANSPORTER

Alessandra Maestro; Michela Terdoslavich; Andreja Vanzo; Federica Tramer; Vanessa Nicolin; Fulvio Micali; Giuliana Decorti; Sabina Passamonti

AIMS Ingestion of flavonoid-rich beverages acutely affects endothelial function, causing vasodilation. This effect might be dependent on flavonoid transport into the endothelium. We investigated flavonoid uptake into vascular endothelial cells and whether this was mediated by bilitranslocase (TC 2.A.65.1.1), a bilirubin-specific membrane carrier that also transports various dietary flavonoids. METHODS AND RESULTS Human and rat aortic primary endothelial cells as well as Ea.hy 926 cells were found to express bilitranslocase, as assessed by immunocytochemistry and immunoblotting analysis using anti-sequence bilitranslocase antibodies targeting two distinct extracellular epitopes of the carrier. Bilitranslocase function was tested by measuring the rate of bromosulfophthalein (a standard bilitranslocase transport substrate) uptake into endothelial cells and was inhibited not only by bilitranslocase antibodies but also by quercetin (a flavonol). Similarly, uptake of both quercetin and malvidin 3-glucoside (an anthocyanin) were also found to be antibody-inhibited. Quercetin uptake into cells was inhibited by bilirubin, suggesting flavonoid uptake via a membrane pathway shared with bilirubin. CONCLUSION The uptake of some flavonoids into the vascular endothelium occurs via the bilirubin-specific membrane transporter bilitranslocase. This offers new insights into the vascular effects of both flavonoids and bilirubin.


Free Radical Biology and Medicine | 2012

Transport and bioactivity of cyanidin 3-glucoside into the vascular endothelium.

Lovro Ziberna; Federica Tramer; Spela Moze; Urska Vrhovsek; Fulvio Mattivi; Sabina Passamonti

Flavonoids are dietary components involved in decreasing oxidative stress in the vascular endothelium and thus the risk of endothelial dysfunction. However, their very low concentrations in plasma place this role in doubt. Thus, a relationship between the effective intracellular concentration of flavonoids and their bioactivity needs to be assessed. This study examined the uptake of physiological concentrations of cyanidin 3-glucoside, a widespread dietary flavonoid, into human vascular endothelial cells. Furthermore, the involvement of the membrane transporter bilitranslocase (TC No. 2.A.65.1.1) as the key underlying molecular mechanism for membrane transport was investigated by using purified anti-sequence antibodies binding at the extracellular domain of the protein. The experimental observations were carried out in isolated plasma membrane vesicles and intact endothelial cells from human endothelial cells (EA.hy926) and on an ischemia-reperfusion model in isolated rat hearts. Cyanidin 3-glucoside was transported via bilitranslocase into endothelial cells, where it acted as a powerful intracellular antioxidant and a cardioprotective agent in the reperfusion phase after ischemia. These findings suggest that dietary flavonoids, despite their limited oral bioavailability and very low postabsorption plasma concentrations, may provide protection against oxidative stress-based cardiovascular diseases. Bilitranslocase, by mediating the cellular uptake of some flavonoids, is thus a key factor in their protective activity on endothelial function.


Journal of Natural Products | 2011

Exceptionally Fast Uptake and Metabolism of Cyanidin 3-Glucoside by Rat Kidneys and Liver

Andreja Vanzo; Urska Vrhovsek; Federica Tramer; Fulvio Mattivi; Sabina Passamonti

To asses the hypothesis that anthocyanins are rapidly taken up from the blood into tissues, where they accumulate up to their bioactivity threshold, an intravenous dose of cyanidin 3-glucoside (1) was administered to anaesthetized rats. Cyanidin 3-glucoside (1) and its metabolites were analyzed in the plasma, kidneys, liver, urine, and bile, using last-generation mass spectrometry. Compound 1 was found to rapidly disappear from plasma (t/2=0.36 min). As soon as 15 s after its administration, both 1 and its methylation product, peonidin 3-glucoside (2), were detected in the plasma, kidneys, and liver. At 1 min, both 1 and 2 had almost disappeared from the plasma, but attained their peak concentrations in the kidneys and in the liver. Compound 2 was rapidly excreted both in the bile and in the urine. Three additional methylated metabolites were detected in traces, namely, delphinidin 3-glucoside (3), petunidin 3-glucoside (4), and malvidin 3-glucoside (5). These data contribute to solving the paradox of the high bioactivity of anthocyanins in spite of their apparent low bioavailability.


ACS Chemical Neuroscience | 2015

Fate of Microbial Metabolites of Dietary Polyphenols in Rats: Is the Brain Their Target Destination?

Mattia Gasperotti; Sabina Passamonti; Federica Tramer; Domenico Masuero; Graziano Guella; Fulvio Mattivi; Urska Vrhovsek

Different polyphenol compounds are ingested when consuming a serving of fruits rich in polyphenols, spanning from one-phenol hydroxybenzoic acid to more complex polymeric compounds. Only a minor quantity of the polyphenols (5-10%) is absorbed. The remainder reaches the colon and is extensively metabolized by gut microbiota to low-molecular weight metabolites. Their subsequent tissue distribution is still undefined, although these microbial metabolites are currently believed to play a role in human health and disease states. To fill this knowledge gap, we performed a pharmacokinetics experiment in which a single bolus of 23 polyphenol microbial metabolites (total 2.7 μmol) was administered intravenously to rats to reliably reproduce a physiological postabsorption situation. Tissues and urine were collected shortly thereafter (15 s to 15 min) and were analyzed by UHPLC-MS/MS to quantitatively track these compounds. Remarkably, the brain was found to be a specific target organ for 10 of the 23 polyphenol metabolites injected, which significantly increased in the treated animals. In most cases, their appearance in the brain was biphasic, with an early wave at 2 min (4 compounds) and a second wave starting at 5 min; at 15 min, 9 compounds were still detectable. Most compounds were excreted into the urine. The concentrations in the brain of the treated animals were compared against those of the control group by Students t test, with p-values < 0.1 considered to be statistically significant. These findings provide new perspectives for understanding the role of diet on brain chemistry. Our experimental approach has enabled us to obtain rich metabolomics information from a single experiment involving a limited number of animals.


Biology of Reproduction | 2003

Differential Splicing of the Phospholipid Hydroperoxide Glutathione Peroxidase Gene in Diploid and Haploid Male Germ Cells in the Rat

Rossella Puglisi; Federica Tramer; Enrico Panfili; Fulvio Micali; Gabriella Sandri; Carla Boitani

Abstract Phospholipid hydroperoxide glutathione peroxidase (PHGPx, 20 kDa) and sperm nuclei glutathione peroxidase (snGPx, 34 kDa) are two selenoproteins present in mammalian testis and epididymal spermatozoa. They originate from the differential splicing of the PHGPx gene and appear to play important roles in sperm physiology. To determine the stages of spermatogenesis in which they are present, we compared the expression pattern of these two enzymes in highly purified populations of germ cells during specific phases of differentiation. In Northern and Western blotting experiments, both PHGPx transcript and protein were markedly expressed in pachytene spermatocytes and round spermatids. In contrast, the testis-specific snGPx was detected at both the mRNA and protein level only in haploid round spermatids. Accordingly, the developmental analysis of testicular RNAs from rats of different ages first revealed the appearance of PHGPx and snGPx transcripts at Day 20 and Day 30, respectively. Furthermore, both meiotic and postmeiotic cells contained catalytically active PHGPx/snGPx, with higher activity in the haploid cells. The intracellular distribution of PHGPx in mitochondria and nuclei of meiotic cells was demonstrated by immunocytochemical electron microscopy and Western blotting. These findings provide evidence that the PHGPx gene is differentially spliced during the meiotic prophase and haploid cell phases of spermatogenesis.


Nutrition Metabolism and Cardiovascular Diseases | 2013

The endothelial plasma membrane transporter bilitranslocase mediates rat aortic vasodilation induced by anthocyanins

Lovro Ziberna; Mojca Lunder; Federica Tramer; Gorazd Drevenšek; Sabina Passamonti

BACKGROUND AND AIMS Anthocyanins, a sub-class of flavonoids, induce endothelium-dependent vasorelaxation, by activating endothelial nitric oxide synthase and consequently increasing production of the vasorelaxant agent nitric oxide. It is not yet clear if anthocyanin-induced vasorelaxation starts with their interaction with plasma membrane receptors in the extracellular compartment, or with their membrane transport toward intracellular molecular targets. We therefore investigated the possible role of bilitranslocase (TC 2.A.65.1.1), an endothelial plasma membrane carrier that transports flavonoids, in the vasodilation activity induced by anthocyanins. METHODS AND RESULTS Vascular reactivity was assessed in thoracic aortic rings obtained from male Wistar rats. Pre-treatment of aortic rings with anti-sequence bilitranslocase antibodies targeting the carrier, decreased vasodilation induced by cyanidin 3-glucoside and bilberry anthocyanins. CONCLUSION Here we show for the first time that bilitranslocase mediates a critical step in vasodilation induced by anthocyanins. This offers new insights into the molecular mechanism involved in endothelium-dependent vasorelaxation by flavonoids, and the importance of their specific membrane carriers.

Collaboration


Dive into the Federica Tramer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Lenzi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge