Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Federico Aulenta is active.

Publication


Featured researches published by Federico Aulenta.


Bioresource Technology | 2011

Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?

Miriam Rosenbaum; Federico Aulenta; Marianna Villano; Largus T. Angenent

This review illuminates extracellular electron transfer mechanisms that may be involved in microbial bioelectrochemical systems with biocathodes. Microbially-catalyzed cathodes are evolving for new bioprocessing applications for waste(water) treatment, carbon dioxide fixation, chemical product formation, or bioremediation. Extracellular electron transfer processes in biological anodes, were the electrode serves as electron acceptor, have been widely studied. However, for biological cathodes the question remains: what are the biochemical mechanisms for the extracellular electron transfer from a cathode (electron donor) to a microorganism? This question was approached by not only analysing the literature on biocathodes, but also by investigating known extracellular microbial oxidation reactions in environmental processes. Here, it is predicted that in direct electron transfer reactions, c-type cytochromes often together with hydrogenases play a critical role and that, in mediated electron transfer reactions, natural redox mediators, such as PQQ, will be involved in the bioelectrochemical reaction. These mechanisms are very similar to processes at the bioanode, but the components operate at different redox potentials. The biocatalyzed cathode reactions, thereby, are not necessarily energy conserving for the microorganism.


Bioresource Technology | 2010

Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture

Marianna Villano; Federico Aulenta; Costanza Ciucci; Tommaso Ferri; Antonio Giuliano; Mauro Majone

This study describes the performance of a microbial biocathode, based on a hydrogenophilic methanogenic culture, capable of reducing carbon dioxide to methane, at high rates (up to 0.055 + or - 0.002 mmol d(-1) mgVSS(-1)) and electron capture efficiencies (over 80%). Methane was produced, at potentials more negative than -650 mV vs. SHE, both via abiotically produced hydrogen gas (i.e., via hydrogenophilic methanogenesis) and via direct extracellular electron transfer. The relative contribution of these two mechanisms was highly dependent on the set cathode potential. Both cyclic voltammetry tests and batch potentiostatic experiments indicated that the capacity for extracellular electron transfer was a constitutive trait of the hydrogenophilic methanogenic culture. In principle, both electrons and carbon dioxide required for methane production could be obtained from a bioanode carrying out the oxidation of waste organic substrates.


Environmental Science & Technology | 2014

Magnetite Particles Triggering a Faster and More Robust Syntrophic Pathway of Methanogenic Propionate Degradation

Carolina Cruz Viggi; Simona Rossetti; Stefano Fazi; Paola Paiano; Mauro Majone; Federico Aulenta

Interspecies electron transfer mechanisms between Bacteria and Archaea play a pivotal role during methanogenic degradation of organic matter in natural and engineered anaerobic ecosystems. Growing evidence suggests that in syntrophic communities electron transfer does not rely exclusively on the exchange of diffusible molecules and energy carriers such as hydrogen or formate, rather microorganisms have the capability to exchange metabolic electrons in a more direct manner. Here, we show that supplementation of micrometer-size magnetite (Fe3O4) particles to a methanogenic sludge enhanced (up to 33%) the methane production rate from propionate, a key intermediate in the anaerobic digestion of organic matter and a model substrate to study energy-limited syntrophic communities. The stimulatory effect most probably resulted from the establishment of a direct interspecies electron transfer (DIET), based on magnetite particles serving as electron conduits between propionate-oxidizing acetogens and carbon dioxide-reducing methanogens. Theoretical calculations revealed that DIET allows electrons to be transferred among syntrophic partners at rates which are substantially higher than those attainable via interspecies H2 transfer. Besides the remarkable potential for improving anaerobic digestion, which is a proven biological strategy for renewable energy production, the herein described conduction-based DIET could also have a role in natural methane emissions from magnetite-rich soils and sediments.


Biotechnology and Bioengineering | 2009

Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators.

Federico Aulenta; Andrea Canosa; Priscilla Reale; Simona Rossetti; S. Panero; Mauro Majone

In situ bioremediation of industrial chlorinated solvents, such as trichloroethene (TCE), is typically accomplished by providing an organic electron donor to naturally occurring dechlorinating populations. In the present study, we show that TCE dechlorinating bacteria can access the electrons required for TCE dechlorination directly from a negatively polarized (−450 mV vs. SHE) carbon paper electrode. In replicated batch experiments, a mixed dechlorinating culture, also containing Dehalococcoides spp., dechlorinated TCE to cis‐dichloroethene (cis‐DCE) and lower amounts of vinyl chloride (VC) and ethene using the polarized electrode as the sole electron donor. Conversely, neither VC nor ethene formation occurred when a pure culture of the electro‐active microorganism Geobacter lovleyi was used, under identical experimental conditions. Cyclic voltammetry tests, carried out on the filter‐sterilized supernatant of the mixed culture revealed the presence of a self‐produced redox mediator, exhibiting a midpoint potential of around −400 mV (vs. SHE). This yet unidentified redox‐active molecule appeared to be involved in the extracellular electron transfer from the electrode to the dechlorinating bacteria. The ability of dechlorinating bacteria to use electrodes as electron donors opens new perspectives for the development of clean, versatile, and efficient bioremediation systems based on a controlled subsurface delivery of electrons in support of biodegradative metabolisms and provides further evidence on the possibility of using conductive materials to manipulate and control a range of microbial bioprocesses. Biotechnol. Bioeng. 2009;103: 85–91.


Biosensors and Bioelectronics | 2010

Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene

Federico Aulenta; Priscilla Reale; Andrea Canosa; Simona Rossetti; S. Panero; Mauro Majone

In the presence of suitable electron donors, the industrial solvent trichloroethene (TCE) is reductively dechlorinated by anaerobic microorganisms, eventually to harmless ethene. In this study we investigated the use of a carbon paper electrode, polarized to -550 mV vs. standard hydrogen electrode (SHE), as direct electron donor for the mediator-less microbial reductive dechlorination of TCE to ethene. In potentiostatic batch assays, TCE was dechlorinated to predominantly cis-dichloroethene (cis-DCE) and lower amounts of vinyl chloride (VC) and ethene, at rates falling in the range 14.2-22.4 micro equiv./Ld. When cis-DCE was spiked to the system, it was also dechlorinated, to VC and ethene, but at a much lower rate (1.5-1.7 micro equiv./Ld). Scanning electron microscopy and FISH analyses revealed that the electrode was homogeneously colonized by active bacterial cells, each in direct contact with the electrode surface. Cyclic voltammetry tests revealed the presence, at the electrode interface, of formed redox active components possibly involved in the extracellular electron transfer processes, that were however detached by a vigorous magnetic stirring. Electrochemical impedance spectroscopy (EIS) tests revealed that polarization resistances of the electrode in the presence of microorganisms (ranging from 0.09 to 0.17 k Omega/cm(2)) were one-order of magnitude lower than those measured with abiotic electrodes (ranging from 1.4 to 1.8 k Omega/cm(2)). This confirmed that attached dechlorinating microorganisms significantly enhanced the kinetics of the electron transfer reactions. Thus, for the first time, the bio-electrochemical dechlorination of TCE to ethene is obtained without the apparent requirements for exogenous or self-produced redox mediators. Accordingly, this work further expands the range of metabolic reactions and microorganisms that can be stimulated by using solid-state electrodes, and has practical implications for the in situ bioremediation of groundwater contaminated by chlorinated solvents.


Chemsuschem | 2012

Linking bacterial metabolism to graphite cathodes: Electrochemical insights into the H2-producing capability of desulfovibrio sp.

Federico Aulenta; Laura Catapano; Laura Snip; Marianna Villano; Mauro Majone

Microbial biocathodes allow converting and storing electricity produced from renewable sources in chemical fuels (e.g., H(2) ) and are, therefore, attracting considerable attention as alternative catalysts to more expensive and less available noble metals (notably Pt). Microbial biocathodes for H(2) production rely on the ability of hydrogenase-possessing microorganisms to catalyze proton reduction, with a solid electrode serving as direct electron donor. This study provides new chemical and electrochemical data on the bioelectrocatalytic activity of Desulfovibrio species. A combination of chronoamperometry, cyclic voltammetry, and impedance spectroscopy tests were used to assess the performance of the H(2) -producing microbial biocathode and to shed light on the involved electron transfer mechanisms. Cells attached onto a graphite electrode were found to catalyze H(2) production for cathode potentials more reducing than -900 mV vs. standard hydrogen electrode. The highest obtained H(2) production was 8 mmol L(-1) per day, with a Coulombic efficiency close to 100 %. The electrochemical performance of the biocathode changed over time probably due to the occurrence of enzyme activation processes induced by extended electrode polarization. Remarkably, H(2) (at least up to 20 % v/v) was not found to significantly inhibit its own production.


Bioresource Technology | 2013

Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell

Marianna Villano; Stefano Scardala; Federico Aulenta; Mauro Majone

The anode of a two-chamber methane-producing microbial electrolysis cell (MEC) was poised at +0.200V vs. the standard hydrogen electrode (SHE) and continuously fed (1.08gCOD/Ld) with acetate in anaerobic mineral medium. A gas mixture (carbon dioxide 30vol.% in N(2)) was continuously added to the cathode for both pH control and carbonate supply. At the anode, 94% of the influent acetate was removed, mostly through anaerobic oxidation (91% coulombic efficiency); the resulting electric current was mainly recovered as methane (79% cathode capture efficiency). Low biomass growth was observed at the anode and ammonium was transferred through the cationic membrane and concentrated at the cathode. These findings suggest that the MEC can be used for the treatment of low-strength wastewater, with good energy efficiency and low sludge production.


Biodegradation | 2002

Complete dechlorination of tetrachloroethene to ethene in presence of methanogenesis and acetogenesis by an anaerobic sediment microcosm.

Federico Aulenta; Mauro Majone; Paolo Verbo; Valter Tandoi

An anaerobic consortium taken from brackish sediments, enriched byPCE/CH3OH sequential feeding, was capable of completely dechlorinating tetrachloroethene(PCE) to ethene (ETH). In batch experiments, PCE (0.5 mM) was dechlorinated to ethene (ETH) in approximately 75 h with either CH3OH or H2 as the electron donor. When VC (0.5 mM) was added instead of PCE it was dechlorinated without any initial lag by the PCE/CH3OHenriched consortium, although at a lower dechlorination rate. In batch tests H2 could readilyreplace CH3OH for supporting PCE dechlorination, with a similar PCE dechlorination rate andproduct distribution with respect to those observed with methanol. This indicates that H2 productionduring CH3OH fermentation was not the rate-limiting step of PCE or VC dechlorination.Acetogenesis was the predominant activity when methanol was present. A remarkable homoacetogenicactivity was also observed when hydrogen was supplied instead of methanol.


Bioresource Technology | 2011

Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents

Marianna Villano; Luca De Bonis; Simona Rossetti; Federico Aulenta; Mauro Majone

Hydrogenophilic dechlorinating bacteria were shown to catalyze H(2) production by proton reduction, with electrodes serving as electron donors, either in the presence or in the absence of a redox mediator. In the presence of methyl viologen, Desulfitobacterium- and Dehalococcoides-enriched cultures produced H(2) at rates as high as 12.4 μeq/mgVSS (volatile suspended solids)/d, with the cathode set at -450 mV vs. the standard hydrogen electrode (SHE), hence very close to the reversible H(+)/H(2) potential value of -414 mV at pH 7. Notably, the Desulfitobacterium-enriched culture was capable of catalyzing H(2) production without mediators at cathode potentials lower than -700 mV. At -750 mV, the H(2) production rate with Desulfitobacterium spp. was 13.5 μeq/mgVSS/d (or 16 μeq/cm(2)/d), nearly four times higher than that of the abiotic controls. Overall, this study suggests the possibility of employing dechlorinating bacteria as hydrogen catalysts in new energy technologies such as microbial electrolysis cells.


Bioresource Technology | 2010

The humic acid analogue antraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene

Federico Aulenta; Veronica Di Maio; Tommaso Ferri; Mauro Majone

Quinone moieties in humic substances have previously been shown to serve as extracellular electron acceptors in different metabolic pathways. Here we show that the humic acid analogue antraquinone-2,6-disulfonate (AQDS) can also serve as an electron donor in the microbial reductive dechlorination of TCE to cis-DCE. In a bioelectrochemical system (BES), equipped with a glassy carbon electrode (cathode) polarized at -250mV vs. SHE, electrically reduced AQDS served as the shuttle of electrons between the electrode surface and the dechlorinating bacteria. Interestingly, AQDS selectively stimulated only the first step of the TCE dechlorination sequence, leading to the formation of cis-DCE. Bioelectrochemical experiments carried out using a dechlorinating culture, highly enriched in the cis-DCE dechlorinating microorganism Dehalococcoides spp., confirmed the inability of reduced AQDS to serve as an electron donor for cis-DCE dechlorination. The results of this study have implications for the development of bioelectrochemical systems for groundwater remediation, as well as for the biogeochemical fate of chlorinated solvents in humic substances-rich subsurface environments.

Collaboration


Dive into the Federico Aulenta's collaboration.

Top Co-Authors

Avatar

Mauro Majone

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Simona Rossetti

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Valter Tandoi

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marianna Villano

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberta Verdini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Mauro Majone

National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Beccari

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Andrea Canosa

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge