Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Federico Brilli is active.

Publication


Featured researches published by Federico Brilli.


Plant Journal | 2008

Isoprene emission is not temperature-dependent during and after severe drought-stress : a physiological and biochemical analysis

Alessio Fortunati; Csengele Barta; Federico Brilli; Mauro Centritto; Ina Zimmer; Jörg-Peter Schnitzler; Francesco Loreto

SUMMARY Black poplar (Populus nigra L.) plants grown at 25 and 35 degrees C were subjected to drought stress to assess the combined impact of two consequences of global climate change--rising temperature and drought--on isoprene biosynthesis and emission. At both temperatures, photosynthesis was inhibited by moderate drought, but isoprene emission only decreased when drought was prolonged. The mRNA transcript level, protein concentration and activity of isoprene synthase (ISPS) changed in concert with isoprene emission during drought stress. However, ISPS activity decreased before isoprene emission during drought development, indicating a tighter control of the emission at a transcriptional or post-transcriptional level under moderate drought stress, and at both temperatures. A residual isoprene emission was measured when photosynthesis was totally inhibited after 35 days of drought. This photosynthesis-independent emission of isoprene was probably dependent on a cytosolic carbon supply as all the properties of ISPS were drastically inhibited. Isoprene emission was associated with dark respiration during the entire drought stress period, and at both temperatures, indicating that the two processes are sustained by, but do not compete for, the same carbon source. Isoprene emission was directly related to phosphoenolpyruvate carboxylase activity in plants grown at 25 degrees C and inversely related in plants grown at 35 degrees C, suggesting a strong temperature control on the regulation of the pyruvate flowing from the cytosol to the plastidic isoprenoid biosynthetic pathway under drought stress and recovery. In re-watered plants, the temperature control on isoprene emission was suppressed, despite complete recovery of photosynthesis and ISPS activity similar to levels in plants subjected to mild drought stress. Our results reveal the overriding effects of drought on isoprene emission, possibly affecting protein level or substrate supply. These effects may largely offset the predicted impact of rising temperatures on the emission of isoprene in terrestrial ecosystems.


PLOS ONE | 2011

Detection of Plant Volatiles after Leaf Wounding and Darkening by Proton Transfer Reaction “Time-of-Flight” Mass Spectrometry (PTR-TOF)

Federico Brilli; Taina M. Ruuskanen; R. Schnitzhofer; Markus Müller; Martin Breitenlechner; Vinzenz Bittner; Georg Wohlfahrt; Francesco Loreto; Armin Hansel

Proton transfer reaction-time of flight (PTR-TOF) mass spectrometry was used to improve detection of biogenic volatiles organic compounds (BVOCs) induced by leaf wounding and darkening. PTR-TOF measurements unambiguously captured the kinetic of the large emissions of green leaf volatiles (GLVs) and acetaldehyde after wounding and darkening. GLVs emission correlated with the extent of wounding, thus confirming to be an excellent indicator of mechanical damage. Transient emissions of methanol, C5 compounds and isoprene from plant species that do not emit isoprene constitutively were also detected after wounding. In the strong isoprene-emitter Populus alba, light-dependent isoprene emission was sustained and even enhanced for hours after photosynthesis inhibition due to leaf cutting. Thus isoprene emission can uncouple from photosynthesis and may occur even after cutting leaves or branches, e.g., by agricultural practices or because of abiotic and biotic stresses. This observation may have important implications for assessments of isoprene sources and budget in the atmosphere, and consequences for tropospheric chemistry.


Plant Cell and Environment | 2009

Constitutive and herbivore-induced monoterpenes emitted by Populus ¥ euroamericana leaves are key volatiles that orient Chrysomela populi beetles

Federico Brilli; Paolo Ciccioli; Massimiliano Frattoni; Marco Prestininzi; Antonio Franco Spanedda; Francesco Loreto

Chrysomela populi beetles feed on poplar leaves and extensively damage plantations. We investigated whether olfactory cues orientate landing and feeding. Young, unexpanded leaves of hybrid poplar emit constitutively a blend of monoterpenes, primarily (E)-beta-ocimene and linalool. This blend attracts inexperienced adults of C. populi that were not previously fed with poplar leaves. In mature leaves constitutively emitting isoprene, insect attack induces biosynthesis and emission of the same blend of monoterpenes, but in larger amount than in young leaves. The olfactometric test indicates that inexperienced beetles are more attracted by adult than by young attacked leaves, suggesting that attraction by induced monoterpenes is dose dependent. The blend does not attract adults that previously fed on poplar leaves. Insect-induced emission of monoterpenes peaks 4 d after the attack, and is also detected in non-attacked leaves. Induced monoterpene emission is associated in mature leaves with a larger decrease of isoprene emission. The reduction of isoprene emission is faster than photosynthesis reduction in attacked leaves, and also occurs in non-attacked leaves. Insect-induced monoterpenes are quickly and completely labelled by 13C. It is speculated that photosynthetic carbon preferentially allocated to constitutive isoprene in healthy leaves is in part diverted to induced monoterpenes after the insect attack.


Atmospheric Chemistry and Physics | 2010

Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF

T. M. Ruuskanen; M. Müller; R. Schnitzhofer; Thomas Karl; Martin Graus; Ines Bamberger; Lukas Hörtnagl; Federico Brilli; Georg Wohlfahrt; Armin Hansel

Eddy covariance (EC) is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5-20 Hz). For volatile organic compounds (VOC) soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF) for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+ - water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes. The smallest reliable fluxes we determined were less than 0.1 nmol m-2 s-1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmolC m-2 s-1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.


Tree Physiology | 2011

Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings

Mauro Centritto; Federico Brilli; Roberta Fodale; Francesco Loreto

The effects of the interaction between high growth temperatures and water stress on gas-exchange properties of Populus nigra saplings were investigated. Water stress was expressed as a function of soil water content (SWC) or fraction of transpirable soil water (FTSW). Isoprene emission and photosynthesis (A) did not acclimate in response to elevated temperature, whereas dark (R(n)) and light (R(d)) respiration underwent thermal acclimation. R(d) was ~30% lower than R(n) irrespective of growth temperature and water stress level. Water stress induced a sharp decline, but not a complete inhibition, of both R(n) and R(d). There was no significant effect of high growth temperature on the responses of A, stomatal conductance (g(s)), isoprene emission, R(n) or R(d) to FTSW. High growth temperature resulted in a significant increase in the SWC endpoint. Photosynthesis was limited mainly by CO(2) acquisition in water-stressed plants. Impaired carbon metabolism became apparent only at the FTSW endpoint. Photosynthesis was restored in about a week following rewatering, indicating transient biochemical limitations. The kinetics of isoprene emission in response to FTSW confirmed that water stress uncouples the emission of isoprene from A, isoprene emission being unaffected by decreasing g(s). The different kinetics of A, respiration and isoprene emission in response to the interaction between high temperature and water stress led to rising R(d)/A ratio and amount of carbon lost as isoprene. Since respiration and isoprene sensitivity are much lower than A sensitivity to water stress, temperature interactions with water stress may dominate poplar acclimatory capability and maintenance of carbon homeostasis under climate change scenarios. Furthermore, predicted temperature increases in arid environments may reduce the amount of soil water that can be extracted before plant gas exchange decreases, exacerbating the effects of water stress even if soil water availability is not directly affected.


Plant Physiology | 2006

Dimethylallyl Diphosphate and Geranyl Diphosphate Pools of Plant Species Characterized by Different Isoprenoid Emissions

Isabel Nogues; Federico Brilli; Francesco Loreto

Dimethylallyl diphosphate (DMADP) and geranyl diphosphate (GDP) are the last precursors of isoprene and monoterpenes emitted by leaves, respectively. DMADP and GDP pools were measured in leaves of plants emitting isoprene (Populus alba), monoterpenes (Quercus ilex and Mentha piperita), or nonemitting isoprenoids (Prunus persica). Detectable pools were found in all plant species, but P. persica showed the lowest pool size, which indicates a limitation of the whole pathway leading to isoprenoid biosynthesis in nonemitting species. The pools of DMADP and GDP of nonemitting, isoprene-emitting, and monoterpene-emitting species were partially labeled (generally 40%–60% of total carbon-incorporated 13C) within the same time by which volatile isoprenoids are fully labeled (15 min). This indicates the coexistence of two pools for both precursors, the rapidly labeled pool presumably occurring in chloroplasts and thereby synthesized by the methylerythritol phosphate pathway and the nonlabeled pool presumably located in the cytosol and synthesized by the mevalonic pathway. In M. piperita storing monoterpenes in specialized leaf structures, the GDP pool remained totally unlabeled, indicating either that monoterpenes are totally formed by the mevalonic pathway or that labeling occurs slowly in comparison to the large pool of stored monoterpenes in this plant. The pools of DMADP and GDP increased during the season (from May to July) but decreased when the leaf was darkened or exposed to very high temperature. In the dark, the pool of DMADP of the isoprene-emitting species decreased faster than the pool of GDP. However, after 6 h of darkness, both pools were depleted to about 10% of the pool size in illuminated leaves. This indicates that both the chloroplastic and the cytosolic pools of precursors are depleted in the dark. When comparing measurements over the season and at different temperatures, an inverse correlation was observed between isoprene emission by P. alba and the DMADP pool size and between monoterpene emission by Q. ilex and the GDP pool size. This suggests that the pool size does not limit the emission of isoprenoids. Rather, it indicates that the flux of volatile isoprenoids effectively controls the size of their pools of precursors.


Plant Cell and Environment | 2012

Carbonyl sulfide (COS) as a tracer for canopy photosynthesis, transpiration and stomatal conductance: potential and limitations

Georg Wohlfahrt; Federico Brilli; Lukas Hörtnagl; Xiaobin Xu; Heinz Bingemer; Armin Hansel; Francesco Loreto

The theoretical basis for the link between the leaf exchange of carbonyl sulfide (COS), carbon dioxide (CO2) and water vapour (H2O) and the assumptions that need to be made in order to use COS as a tracer for canopy net photosynthesis, transpiration and stomatal conductance, are reviewed. The ratios of COS to CO2 and H2O deposition velocities used to this end are shown to vary with the ratio of the internal to ambient CO2 and H2O mole fractions and the relative limitations by boundary layer, stomatal and internal conductance for COS. It is suggested that these deposition velocity ratios exhibit considerable variability, a finding that challenges current parameterizations, which treat these as vegetation-specific constants. COS is shown to represent a better tracer for CO2 than H2O. Using COS as a tracer for stomatal conductance is hampered by our present poor understanding of the leaf internal conductance to COS. Estimating canopy level CO2 and H2O fluxes requires disentangling leaf COS exchange from other ecosystem sources/sinks of COS. We conclude that future priorities for COS research should be to improve the quantitative understanding of the variability in the ratios of COS to CO2 and H2O deposition velocities and the controlling factors, and to develop operational methods for disentangling ecosystem COS exchange into contributions by leaves and other sources/sinks. To this end, integrated studies, which concurrently quantify the ecosystem-scale CO2, H2O and COS exchange and the corresponding component fluxes, are urgently needed. We investigate the potential of carbonyl sulfide (COS) for being used as a tracer for canopy net photosynthesis, transpiration and stomatal conductance by examining the theoretical basis of the link between leaf COS, carbon dioxide (CO2) and water vapour (H2O) exchange. Our analysis identifies several limitations that need to be overcome to this end, however at present we lack appropriate ecosystem-scale field measurements for assessing their practical significance. It however appears that COS represents a better tracer for CO2 than H2O. Concurrent measurements of ecosystem scale COS, CO2 and H2O exchange are advocated.


Environmental Science & Technology | 2012

Qualitative and quantitative characterization of volatile organic compound emissions from cut grass.

Federico Brilli; Lukas Hörtnagl; Ines Bamberger; R. Schnitzhofer; Taina M. Ruuskanen; Armin Hansel; Francesco Loreto; Georg Wohlfahrt

Mechanical wounding of plants triggers the release of a blend of reactive biogenic volatile organic compounds (BVOCs). During and after mowing and harvesting of managed grasslands, significant BVOC emissions have the potential to alter the physical and chemical properties of the atmosphere and lead to ozone and aerosol formation with consequences for regional air quality. We show that the amount and composition of BVOCs emitted per unit dry weight of plant material is comparable between laboratory enclosure measurements of artificially severed grassland plant species and in situ ecosystem-scale flux measurements above a temperate mountain grassland during and after periodic mowing and harvesting. The investigated grassland ecosystem emitted annually up to 130 mg carbon m(-2) in response to cutting and drying, the largest part being consistently represented by methanol and a blend of green leaf volatiles (GLV). In addition, we report the plant species-specific emission of furfural, terpenoid-like compounds (e.g., camphor), and sesquiterpenes from cut plant material, which may be used as tracers for the presence of given plant species in the ecosystem.


Functional Plant Biology | 2006

Isoprene prevents the negative consequences of high temperature stress in Platanus orientalis leaves

Violeta Velikova; Francesco Loreto; Tsonko Tsonev; Federico Brilli; Aglika Edreva

The phenomenon of enhanced plant thermotolerance by isoprene was studied in leaves of the same age of 1- or 2-year-old Platanus orientalis plants. Our goals were to determine whether the isoprene emission depends on the age of the plant, and whether different emission rates can influence heat resistance in plants of different age. Two-year-old plants emit greater amounts of isoprene and possess better capacity to cope with heat stress than 1-year-old plants. After a high temperature treatment (38°C for 4 h), photosynthetic activity, hydrogen peroxide content, lipid peroxidation and antiradical activity were preserved in isoprene emitting leaves of 1- and 2-year-old plants. However, heat inhibited photosynthesis and PSII efficiency, caused accumulation of H2O2, and increased all indices of membrane damage and antioxidant capacity in leaves of plants of both ages in which isoprene was inhibited by fosmidomycin. In isoprene-inhibited leaves fumigated with exogenous isoprene during the heat treatment, the negative effects on photosynthetic capacity were reduced. These results further support the notion that isoprene plays an important role in protecting photosynthesis against damage at high temperature. It is suggested that isoprene is an important compound of the non-enzymatic defence of plants against thermal stress, possibly contributing to scavenging of reactive oxygen species (ROS) and membrane stabilising capacity, especially in developed plants.


Journal of Experimental Botany | 2013

Ultradian variation of isoprene emission, photosynthesis, mesophyll conductance, and optimum temperature sensitivity for isoprene emission in water-stressed Eucalyptus citriodora saplings

Federico Brilli; Tsonko Tsonev; Tariq Mahmood; Violeta Velikova; Francesco Loreto; Mauro Centritto

Water availability is a major limiting factor on plant growth and productivity. Considering that Eucalyptus spp. are among the few plant species able to produce both isoprene and monoterpenes, experiments were designed to investigate the response of isoprene emission and isoprenoid concentrations in Eucalyptus citriodora saplings exposed to decreasing fraction of transpirable soil water (FTSW). In particular, this study aimed to assess: (a) the kinetic of water stress-induced variations in photosynthesis, isoprene emission, and leaf isoprenoid concentrations during progressive soil water shortage as a function of FTSW; (b) the ultradian control of isoprene emission and photosynthesis under limited soil water availability; and (c) the optimum temperature sensitivity of isoprene emission and photosynthesis under severe water stress. The optimum temperature for isoprene emission did not change under progressive soil water deficit. However, water stress induced a reallocation of carbon through the MEP/DOXP pathway resulting in a qualitative change of the stored isoprenoids. The ultradian trend of isoprene emission was also unaffected under water stress, and a similar ultradian trend of stomatal and mesophyll conductances was also observed, highlighting a tight coordination between diffusion limitations to photosynthesis during water stress. The kinetics of photosynthetic parameters and isoprene emission in response to decreasing FTSW in E. citriodora are strikingly similar to those measured in other plant functional types. These findings may be useful to refine the algorithms employed in process-based models aiming to precisely up-scale carbon assimilation and isoprenoid emissions at regional and global scales.

Collaboration


Dive into the Federico Brilli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauro Centritto

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Armin Hansel

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Csengele Barta

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beniamino Gioli

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Isabel Nogues

National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge