Federico Calegari
Dresden University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Federico Calegari.
Cell Stem Cell | 2009
Christian Lange; Wieland B. Huttner; Federico Calegari
During mouse embryonic development, neural progenitors lengthen the G1 phase of the cell cycle and this has been suggested to be a cause, rather than a consequence, of neurogenesis. To investigate whether G1 lengthening alone may cause the switch of cortical progenitors from proliferation to neurogenesis, we manipulated the expression of cdk/cyclin complexes and found that cdk4/cyclinD1 overexpression prevents G1 lengthening without affecting cell growth, cleavage plane, or cell cycle synchrony with interkinetic nuclear migration. Specifically, overexpression of cdk4/cyclinD1 inhibited neurogenesis while increasing the generation and expansion of basal (intermediate) progenitors, resulting in a thicker subventricular zone and larger surface area of the postnatal cortex originating from cdk4/cyclinD1-transfected progenitors. Conversely, lengthening of G1 by cdk4/cyclinD1-RNAi displayed the opposite effects. Thus, G1 lengthening is necessary and sufficient to switch neural progenitors to neurogenesis, and overexpression of cdk4/cyclinD1 can be used to increase progenitor expansion and, perhaps, cortical surface area.
The Journal of Neuroscience | 2005
Federico Calegari; Wulf Haubensak; Christiane Haffner; Wieland B. Huttner
During embryonic development of the mammalian brain, the average cell-cycle length of progenitor cells in the ventricular zone is known to increase. However, for any given region of the developing cortex and stage of neurogenesis, the length of the cell cycle is thought to be similar in the two coexisting subpopulations of progenitors [i.e., those undergoing (symmetric) proliferative divisions and those undergoing (either asymmetric or symmetric) neuron-generating divisions]. Using cumulative bromodeoxyuridine labeling of Tis21-green fluorescent protein knock-in mouse embryos, in which these two subpopulations of progenitors can be distinguished in vivo, we now show that at the onset as well as advanced stages of telencephalic neurogenesis, progenitors undergoing neuron-generating divisions are characterized by a significantly longer cell cycle than progenitors undergoing proliferative divisions. In addition, we find that the recently characterized neuronal progenitors dividing at the basal side of the ventricular zone and in the subventricular zone have a longer G2 phase than those dividing at the ventricular surface. These findings are consistent with the hypothesis (Calegari and Huttner, 2003) that cell-cycle lengthening can causally contribute to neural progenitors switching from proliferative to neuron-generating divisions and may have important implications for the expansion of somatic stem cells in general.
Journal of Cell Science | 2003
Federico Calegari; Wieland B. Huttner
The G1 phase of the cell cycle of neuroepithelial cells, the progenitors of all neurons of the mammalian central nervous system, has been known to lengthen concomitantly with the onset and progression of neurogenesis. We have investigated whether lengthening of the G1 phase of the neuroepithelial cell cycle is a cause, rather than a consequence, of neurogenesis. As an experimental system, we used whole mouse embryo culture, which was found to exactly reproduce the temporal and spatial gradients of the onset of neurogenesis occurring in utero. Olomoucine, a cell-permeable, highly specific inhibitor of cyclin-dependent kinases and G1 progression, was found to significantly lengthen, but not arrest, the cell cycle of neuroepithelial cells when used at 80 μM. This olomoucine treatment induced, in the telencephalic neuroepithelium of embryonic day 9.5 to 10.5 mouse embryos developing in whole embryo culture to embryonic day 10.5, (i) the premature up-regulation of TIS21, a marker identifying neuroepithelial cells that have switched from proliferative to neuron-generating divisions, and (ii) the premature generation of neurons. Our data indicate that lengthening G1 can alone be sufficient to induce neuroepithelial cell differentiation. We propose a model that links the effects of cell fate determinants and asymmetric cell division to the length of the cell cycle.
Nature Communications | 2011
Yoko Arai; Jeremy N. Pulvers; Christiane Haffner; Britta Schilling; Ina Nüsslein; Federico Calegari; Wieland B. Huttner
During mammalian cerebral cortex development, the G1-phase of the cell cycle is known to lengthen, but it has been unclear which neural stem and progenitor cells are affected. In this paper, we develop a novel approach to determine cell-cycle parameters in specific classes of neural stem and progenitor cells, identified by molecular markers rather than location. We found that G1 lengthening was associated with the transition from stem cell-like apical progenitors to fate-restricted basal (intermediate) progenitors. Unexpectedly, expanding apical and basal progenitors exhibit a substantially longer S-phase than apical and basal progenitors committed to neuron production. Comparative genome-wide gene expression analysis of expanding versus committed progenitor cells revealed changes in key factors of cell-cycle regulation, DNA replication and repair and chromatin remodelling. Our findings suggest that expanding neural stem and progenitor cells invest more time during S-phase into quality control of replicated DNA than those committed to neuron production.
Trends in Cell Biology | 2010
Paolo Salomoni; Federico Calegari
The potential to increase unlimitedly in number and to generate differentiated cell types is a key feature of somatic stem cells. Within the nervous system, cellular and environmental determinants tightly control the expansion and differentiation of neural stem cells. Importantly, a number of studies have indicated that changes in cell cycle length can influence development and physiopathology of the nervous system, and might have played a role during evolution of the mammalian brain. Specifically, it has been suggested that the length of G1 can directly influence the differentiation of neural precursors. This has prompted the proposal of a model to explain how manipulation of G1 length can be used to expand neural stem cells. If validated in non-neural systems, this model might provide the means to control the proliferation vs. differentiation of somatic stem cells, which will represent a significant advance in the field.
Journal of Biological Chemistry | 1999
Federico Calegari; Silvia Coco; Elena Taverna; Monique Bassetti; Claudia Verderio; Nicoletta Corradi; Michela Matteoli; Patrizia Rosa
Glial cells have been reported to express molecules originally discovered in neuronal and neuroendocrine cells, such as neuropeptides, neuropeptide processing enzymes, and ionic channels. To verify whether astrocytes may have regulated secretory vesicles, the primary cultures prepared from hippocampi of embryonic and neonatal rats were used to investigate the subcellular localization and secretory pathway followed by secretogranin II, a well known marker for dense-core granules. By indirect immunofluorescence, SgII was detected in a large number of cultured hippocampal astrocytes. Immunoreactivity for the granin was detected in the Golgi complex and in a population of dense-core vesicles stored in the cells. Subcellular fractionation experiments revealed that SgII was stored in a vesicle population with a density identical to that of the dense-core secretory granules present in rat pheochromocytoma cells. In line with these data, biochemical results indicated that 40–50% of secretogranin II synthesized during 18-h labeling was retained intracellularly over a 4-h chase period and released after treatment with different secretagogues. The most effective stimulus appeared to be phorbol ester in combination with ionomycin in the presence of extracellular Ca2+, a treatment that was found to produce a large and sustained increase in intracellular calcium [Ca2+] i transients. Our findings indicate that a regulated secretory pathway characterized by (i) the expression and stimulated exocytosis of a typical marker for regulated secretory granules, (ii) the presence of dense-core vesicles, and (iii) the ability to undergo [Ca2+] i increase upon specific stimuli is present in cultured hippocampal astrocytes.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Federico Calegari; Wulf Haubensak; Dun Yang; Wieland B. Huttner; Frank Buchholz
RNA interference (RNAi) using double-stranded RNA has been used for the systematic analysis of gene function in invertebrate organisms. Here we have explored the use of short interfering RNA (siRNA) to knock down gene expression during the development of mammalian postimplantation embryos. The developing CNS system of embryonic day 10 mouse embryos was used as a model tissue. siRNA prepared by endoribonuclease digestion (esiRNA) was injected into the lumen of the neural tube at specific regions and delivered into neuroepithelial cells by directed electroporation. Injected and electroporated embryos were grown for 1 day in whole-embryo culture and the effects of RNAi were examined. esiRNA directed against β-galactosidase (β-gal), coelectroporated into neuroepithelial cells together with reporter plasmids expressing GFP and β-gal, abolished expression of β-gal but not GFP, showing the specificity of the esiRNA-mediated RNAi. To demonstrate RNAi of endogenous gene expression, we used heterozygous embryos of a knock-in mouse line expressing GFP from the Tis21 locus, a gene turned on in neuroepithelial cells that switch from proliferation to neurogenesis. GFP-directed esiRNA electroporated into neuroepithelial cells of such embryos blocked the GFP expression normally occurring on the onset of neurogenesis. Taken together, our data indicate that esiRNA delivered in a tissue-specific manner by topical injection followed by directed electroporation can efficiently silence endogenous gene expression in mammalian postimplantation embryos.
PLOS ONE | 2008
Federico Calegari; Wulf Haubensak; Michaela Wilsch-Bräuninger; Wieland B. Huttner
The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors.
Cell Cycle | 2010
Christian Lange; Federico Calegari
It is long known that stem cell differentiation correlates with a lengthening of the cell cycle, in particular G1. Moreover, models were proposed for mammalian embryonic, neural and hematopoietic stem cells whereby lengthening of G1 is a cause, rather than a consequence, of differentiation. These models are based on the concept that time, i.e., G1 length, may be a limiting factor for cell fate change to occur because differentiation factors require time in order to trigger a physiological response. Despite the many correlative studies, this hypothesis proved difficult to demonstrate because most trophic, signaling or transcription factors involved in stem cell differentiation may concurrently, but independently, also have an effect on cell cycle progression, which calls for a thorough review on the differentiation role of genes whose best characterized and long established function is exclusively to control G1. For this reason, we here focus our attention on the effects that the core molecular machinery controlling G1 progression, i.e., the G1-specific cyclin dependent kinase (cdk)/cyclin complexes, have on stem cell differentiation. In particular, we will discuss the effects of G1-cdks/cyclins on differentiation of embryonic, neural and hematopoietic stem cells during development and adulthood, for which a role of G1 length has been proposed.
The EMBO Journal | 2013
Miki Nonaka-Kinoshita; Isabel Reillo; Benedetta Artegiani; Maria Ángeles Martínez-Martínez; Mark Nelson; Víctor Borrell; Federico Calegari
Size and folding of the cerebral cortex increased massively during mammalian evolution leading to the current diversity of brain morphologies. Various subtypes of neural stem and progenitor cells have been proposed to contribute differently in regulating thickness or folding of the cerebral cortex during development, but their specific roles have not been demonstrated. We report that the controlled expansion of unipotent basal progenitors in mouse embryos led to megalencephaly, with increased surface area of the cerebral cortex, but not to cortical folding. In contrast, expansion of multipotent basal progenitors in the naturally gyrencephalic ferret was sufficient to drive the formation of additional folds and fissures. In both models, changes occurred while preserving a structurally normal, six‐layered cortex. Our results are the first experimental demonstration of specific and distinct roles for basal progenitor subtypes in regulating cerebral cortex size and folding during development underlying the superior intellectual capability acquired by higher mammals during evolution.