Federico D. Brown
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Federico D. Brown.
Genesis | 2008
Federico D. Brown; Andrew Prendergast; Billie J. Swalla
The origin of chordates remains one of the major puzzles of zoology, even after more than a century of intense scientific inquiry, following Darwins “Origin of Species”. The chordates exhibit a unique body plan that evolved from a deuterostome ancestor some time before the Cambrian. Molecular data gathered from phylogenetics and developmental gene expression has changed our perception of the relationships within and between deuterostome phyla. Recent developmental gene expression data has shown that the chordates use similar gene families and networks to specify their anterior‐posterior, dorsal‐ventral and left‐right body axes. The anterior‐posterior axis is similarly established among deuterostomes and is determined by a related family of transcription factors, the Hox gene clusters and Wnt signaling pathways. In contrast, the dorsal‐ventral axis is inverted in chordates, compared with other nonchordate invertebrates, while still determined by expression of BMP signaling pathway members and their antagonists. Finally, left‐right asymmetries in diverse deuterostomes are determined by nodal signaling. These new data allow revised, testable hypotheses about our earliest ancestors. We present a new hypothesis for the origin of the chordates whereby the expansion of BMP during dorsal‐ventral patterning allowed the evolution of noneural ectoderm and pharyngeal gill slits on the ventral side. We conclude that “Man is but a worm…,” that our chordate ancestors were worm‐like deposit and/or filter feeders with pharyngeal slits, and an anterior tripartite unsegmented neurosensory region. genesis 46:605–613, 2008.
Development | 2009
Federico D. Brown; Stefano Tiozzo; Michelle M. Roux; Katherine J. Ishizuka; Billie J. Swalla; Anthony W. De Tomaso
In many taxa, germline precursors segregate from somatic lineages during embryonic development and are irreversibly committed to gametogenesis. However, in animals that can propagate asexually, germline precursors can originate in adults. Botryllus schlosseri is a colonial ascidian that grows by asexual reproduction, and on a weekly basis regenerates all somatic and germline tissues. Embryonic development in solitary ascidians is the classic example of determinative specification, and we are interested in both the origins and the persistence of stem cells responsible for asexual development in colonial ascidians. In this study, we characterized vasa as a putative marker of germline precursors. We found that maternally deposited vasa mRNA segregates early in development to a posterior lineage of cells, suggesting that germline formation is determinative in colonial ascidians. In adults, vasa expression was observed in the gonads, as well as in a population of mobile cells scattered throughout the open circulatory system, consistent with previous transplantation/reconstitution results. vasa expression was dynamic during asexual development in both fertile and infertile adults, and was also enriched in a population of stem cells. Germline precursors in juveniles could contribute to gamete formation immediately upon transplantation into fertile adults, thus vasa expression is correlated with the potential for gamete formation, which suggests that it is a marker for embryonically specified, long-lived germline progenitors. Transient vasa knockdown did not have obvious effects on germline or somatic development in adult colonies, although it did result in a profound heterochrony, suggesting that vasa might play a homeostatic role in asexual development.
Journal of Experimental Zoology | 2009
Federico D. Brown; Elena L. Keeling; Anna D. Le; Billie J. Swalla
Colonial ascidians are the only chordates to undergo whole body regeneration (WBR), the ability to form an entirely new individual from the peripheral vasculature. Here we describe WBR in Botrylloides violaceus, a colonial ascidian that reliably regenerates after ablation of all zooids and buds of young colonies. During early regeneration several buds develop within the tunic vasculature, but only one continues development into a complete zooid. We describe some of the first events of vascular budding leading to the vesicle stage with phase contrast microscopy, time-lapse video recording and detailed histological studies of regenerating colonies. The first conspicuous stage of vascular budding is when a single-layered sphere of cells becomes enclosed by vascular epithelium. We report the appearance of Piwi-positive cells in hemocytes surrounding the regenerates. We observed an increase of proliferating cell nuclear antigen (PCNA)-positive cells in circulatory hemocytes in late regenerates, and found double-labeled nuclear expression with Piwi in a subset of large circulatory cells. We rarely found Piwi or PCNA in differentiating tissues during vascular budding, suggesting that cells that form the epithelial tissues during budding and WBR originate mostly from circulatory hemocyte precursors. We propose that multiple stem cell types are circulating within B. violaceus and that they undergo proliferation in the peripheral vasculature before differentiating into epithelial tissues for all three germ layers during WBR.
Evolution & Development | 2007
Federico D. Brown; Billie J. Swalla
SUMMARY Evolution of solitary or colonial life histories in tunicates is accompanied by dramatic developmental changes that affect morphology and reproduction. We compared vasa expression in a solitary ascidian and a closely related colonial ascidian, in an effort to uncover developmental mechanisms important during the evolution of these contrasting life histories, including the ability to reproduce by budding. In this study, we explored the origin of germ cells in new buds developing by asexual reproduction in a colonial ascidian, Botrylloides violaceus and compared it to the source of germ cells in a solitary ascidian Boltenia villosa. We studied expression by in situ hybridization of vasa, a DEAD box RNA helicase gene found in germ cells across the metazoans. In B. villosa, bv‐vasa mRNA was expressed in putative germ cells and oocytes of adult gonads, and was sequestered into a posterior lineage during embryogenesis. In mature colonies of the ascidian B. violaceus, bot‐vasa mRNA was expressed in putative spermatogonia, in oocytes of zooids, and in some circulating cells in the zooids and differentiating buds. We propose that expression of vasa in cells other than gonadal germ cells of zooids in a colonial ascidian may serve as a source of germ‐line stem cells in the colony.
Developmental Biology | 2008
Stefano Tiozzo; Ayelet Voskoboynik; Federico D. Brown; Anthony W. De Tomaso
Angiogenesis, the growth and remodeling of a vascular network, is an essential process during development, growth and disease. Here we studied the role of the vascular endothelial growth factor receptor (VEGFR) in experimentally-induced angiogenesis in the colonial ascidian Botryllus schlosseri (Tunicata, Ascidiacea). The circulatory system of B. schlosseri is composed of two distinct, but interconnected regions: a plot of sinuses and lacunae which line the body, and a transparent, macroscopic extracorporeal vascular network. The vessels of the extracorporeal vasculature are morphologically inverted in comparison to the vasculature in vertebrates: they consist of a single layer of ectodermally-derived cells with the basal lamina lining the lumen of the vessel. We found that when the peripheral circulatory system of a colony is surgically removed, it can completely regenerate within 24 to 48 h and this regeneration is dependent on proper function of the VEGF pathway: siRNA-mediated knockdown of the VEGFR blocked vascular regeneration, and interfered with vascular homeostasis. In addition, a small molecule, the VEGFR kinase inhibitor PTK787/ZK222584, phenocopied the siRNA knockdown in a reversible manner. Despite the disparate germ layer origins and morphology of the vasculature, the developmental program of branching morphogenesis during angiogenesis is controlled by similar molecular mechanisms, suggesting that the function of the VEGF pathway may be co-opted during the regeneration of an ectoderm-derived tubular structure.
Evolution & Development | 2015
Armin P. Moczek; Karen E. Sears; Angelika Stollewerk; Patricia J. Wittkopp; Pamela K. Diggle; Ian Dworkin; Cristina Ledon-Rettig; David Q. Matus; Siegfried Roth; Ehab Abouheif; Federico D. Brown; Chi Hua Chiu; C. Sarah Cohen; Anthony W. De Tomaso; Scott F. Gilbert; Brian K. Hall; Alan C. Love; Deirdre C. Lyons; Thomas J. Sanger; Joel Smith; Chelsea D. Specht; Mario Vallejo-Marín; Cassandra G. Extavour
Evolutionary developmental biology (evo‐devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo‐devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines—from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself—and discuss why evo‐devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo‐devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century.
Evolution & Development | 2015
Armin P. Moczek; Karen E. Sears; Angelika Stollewerk; Patricia J. Wittkopp; Pamela K. Diggle; Ian Dworkin; Cristina Ledon-Rettig; David Q. Matus; Siegfried Roth; Ehab Abouheif; Federico D. Brown; Chi Hua Chiu; C. Sarah Cohen; Anthony W. De Tomaso; Scott F. Gilbert; Brian K. Hall; Alan C. Love; Deirdre C. Lyons; Thomas J. Sanger; Joel Smith; Chelsea D. Specht; Mario Vallejo-Marín; Cassandra G. Extavour
Evolutionary developmental biology (evo‐devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo‐devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines—from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself—and discuss why evo‐devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo‐devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century.
BMC Genomics | 2016
Cristian A. Velandia-Huerto; Adriaan Gittenberger; Federico D. Brown; Peter F. Stadler; Clara I. Bermúdez-Santana
BackgroundThe colonial ascidian Didemnum vexillum, sea carpet squirt, is not only a key marine organism to study morphological ancestral patterns of chordates evolution but it is also of great ecological importance due to its status as a major invasive species. Non-coding RNAs, in particular microRNAs (miRNAs), are important regulatory genes that impact development and environmental adaptation. Beyond miRNAs, not much in known about tunicate ncRNAs.ResultsWe provide here a comprehensive homology-based annotation of non-coding RNAs in the recently sequenced genome of D. vexillum. To this end we employed a combination of several computational approaches, including blast searches with a wide range of parameters, and secondary structured centered survey with infernal. The resulting candidate set was curated extensively to produce a high-quality ncRNA annotation of the first draft of the D. vexillum genome. It comprises 57 miRNA families, 4 families of ribosomal RNAs, 22 isoacceptor classes of tRNAs (of which more than 72 % of loci are pseudogenes), 13 snRNAs, 12 snoRNAs, and 1 other RNA family. Additionally, 21 families of mitochondrial tRNAs and 2 of mitochondrial ribosomal RNAs and 1 long non-coding RNA.ConclusionsThe comprehensive annotation of the D. vexillum non-coding RNAs provides a starting point towards a better understanding of the restructuring of the small RNA system in ascidians. Furthermore it provides a valuable research for efforts to establish detailed non-coding RNA annotations for other recently published and recently sequences in tunicate genomes.
Genetics and Molecular Biology | 2015
Sigmer Quiroga; E. Carolina Bonilla; D. Marcela Bolaños; Fernando Carbayo; Marian K. Litvaitis; Federico D. Brown
The nervous systems of flatworms have diversified extensively as a consequence of the broad range of adaptations in the group. Here we examined the central nervous system (CNS) of 12 species of polyclad flatworms belonging to 11 different families by morphological and histological studies. These comparisons revealed that the overall organization and architecture of polyclad central nervous systems can be classified into three categories (I, II, and III) based on the presence of globuli cell masses -ganglion cells of granular appearance-, the cross-sectional shape of the main nerve cords, and the tissue type surrounding the nerve cords. In addition, four different cell types were identified in polyclad brains based on location and size. We also characterize the serotonergic and FMRFamidergic nervous systems in the cotylean Boninia divae by immunocytochemistry. Although both neurotransmitters were broadly expressed, expression of serotonin was particularly strong in the sucker, whereas FMRFamide was particularly strong in the pharynx. Finally, we test some of the major hypothesized trends during the evolution of the CNS in the phylum by a character state reconstruction based on current understanding of the nervous system across different species of Platyhelminthes and on up-to-date molecular phylogenies.
Molecular Biology and Evolution | 2018
Alexandre Alié; Laurel Sky Hiebert; Paul Simion; Marta Scelzo; Maria Mandela Prünster; Sonia Lotito; Frédéric Delsuc; Emmanuel J. P. Douzery; Christelle Dantec; Patrick Lemaire; Sébastien Darras; Kazuo Kawamura; Federico D. Brown; Stefano Tiozzo
Abstract Asexual propagation and whole body regeneration are forms of nonembryonic development (NED) widespread across animal phyla and central in life history and evolutionary diversification of metazoans. Whereas it is challenging to reconstruct the gains or losses of NED at large phylogenetic scale, comparative studies could benefit from being conducted at more restricted taxonomic scale, in groups for which phylogenetic relationships are well established. The ascidian family of Styelidae encompasses strictly sexually reproducing solitary forms as well as colonial species that combine sexual reproduction with different forms of NED. To date, the phylogenetic relationships between colonial and solitary styelids remain controversial and so is the pattern of NED evolution. In this study, we built an original pipeline to combine eight genomes with 18 de novo assembled transcriptomes and constructed data sets of unambiguously orthologous genes. Using a phylogenomic super-matrix of 4,908 genes from these 26 tunicates we provided a robust phylogeny of this family of chordates, which supports two convergent acquisitions of NED. This result prompted us to further describe the budding process in the species Polyandrocarpa zorritensis, leading to the discovery of a novel mechanism of asexual development. Whereas the pipeline and the data sets produced can be used for further phylogenetic reconstructions in tunicates, the phylogeny provided here sets an evolutionary framework for future experimental studies on the emergence and disappearance of complex characters such as asexual propagation and whole body regeneration.