Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Federico Forneris is active.

Publication


Featured researches published by Federico Forneris.


Journal of the American Chemical Society | 2010

Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSD2

Claudia Binda; Sergio Valente; Mauro Romanenghi; Simona Pilotto; Roberto Cirilli; Aristotele Karytinos; Giuseppe Ciossani; Oronza A. Botrugno; Federico Forneris; Maria Tardugno; Dale E. Edmondson; Saverio Minucci; Andrea Mattevi; Antonello Mai

LSD1 and LSD2 histone demethylases are implicated in a number of physiological and pathological processes, ranging from tumorigenesis to herpes virus infection. A comprehensive structural, biochemical, and cellular study is presented here to probe the potential of these enzymes for epigenetic therapies. This approach employs tranylcypromine as a chemical scaffold for the design of novel demethylase inhibitors. This drug is a clinically validated antidepressant known to target monoamine oxidases A and B. These two flavoenzymes are structurally related to LSD1 and LSD2. Mechanistic and crystallographic studies of tranylcypromine inhibition reveal a lack of selectivity and differing covalent modifications of the FAD cofactor depending on the enantiomeric form. These findings are pharmacologically relevant, since tranylcypromine is currently administered as a racemic mixture. A large set of tranylcypromine analogues were synthesized and screened for inhibitory activities. We found that the common evolutionary origin of LSD and MAO enzymes, despite their unrelated functions and substrate specificities, is reflected in related ligand-binding properties. A few compounds with partial enzyme selectivity were identified. The biological activity of one of these new inhibitors was evaluated with a cellular model of acute promyelocytic leukemia chosen since its pathogenesis includes aberrant activities of several chromatin modifiers. Marked effects on cell differentiation and an unprecedented synergistic activity with antileukemia drugs were observed. These data demonstrate that these LSD1/2 inhibitors are of potential relevance for the treatment of promyelocytic leukemia and, more generally, as tools to alter chromatin state with promise of a block of tumor progression.


Journal of Biological Chemistry | 2005

Human Histone Demethylase LSD1 Reads the Histone Code

Federico Forneris; Claudia Binda; Maria A. Vanoni; Elena Battaglioli; Andrea Mattevi

Human histone demethylase LSD1 is a flavin-dependent amine oxidase that catalyzes the specific removal of methyl groups from mono- and dimethylated Lys4 of histone H3. The N-terminal tail of H3 is subject to various covalent modifications, and a fundamental question in LSD1 biology is how these epigenetic marks affect the demethylase activity. We show that LSD1 does not have a strong preference for mono- or dimethylated Lys4 of H3. Substrate recognition is not confined to the residues neighboring Lys4, but it requires a sufficiently long peptide segment consisting of the N-terminal 20 amino acids of H3. Electrostatic interactions are an important factor in protein-substrate recognition, as indicated by the high sensitivity of Km to ionic strength. We have probed LSD1 for its ability to demethylate Lys4 in presence of a second modification on the same peptide substrate. Methylation of Lys9 does not affect enzyme catalysis. Conversely, Lys9 acetylation causes an almost 6-fold increase in the Km value, whereas phosphorylation of Ser10 totally abolishes activity. LSD1 is inhibited by a demethylated peptide with an inhibition constant of 1.8 μm, suggesting that LSD1 can bind to H3 independently of Lys4 methylation. LSD1 is a chromatin-modifying enzyme, which is able to read different epigenetic marks on the histone N-terminal tail and can serve as a docking module for the stabilization of the associated corepressor complex(es) on chromatin.


FEBS Letters | 2005

Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process

Federico Forneris; Claudia Binda; Maria A. Vanoni; Andrea Mattevi; Elena Battaglioli

Lysine‐specific histone demethylase 1 (LSD1) is a very recently discovered enzyme which specifically removes methyl groups from Lys4 of histone 3. We have addressed the functional properties of the protein demonstrating that histone demethylation involves the flavin‐catalysed oxidation of the methylated lysine. The nature of the substrate that acts as the electron acceptor required to complete the catalytic cycle was investigated. LSD1 converts oxygen to hydrogen peroxide although this reactivity is not as pronounced as that of other flavin‐dependent oxidases. Our findings raise the possibility that in vivo LSD1 might not necessarily function as an oxidase, but it might use alternative electron acceptors.


Journal of Biological Chemistry | 2009

A Novel Mammalian Flavin-dependent Histone Demethylase

Aristotele Karytinos; Federico Forneris; Antonella Profumo; Giuseppe Ciossani; Elena Battaglioli; Claudia Binda; Andrea Mattevi

Methylation of Lys residues on histone proteins is a well known and extensively characterized epigenetic mark. The recent discovery of lysine-specific demethylase 1 (LSD1) demonstrated that lysine methylation can be dynamically controlled. Among the histone demethylases so far identified, LSD1 has the unique feature of functioning through a flavin-dependent amine oxidation reaction. Data base analysis reveals that mammalian genomes contain a gene (AOF1, for amine-oxidase flavin-containing domain 1) that is homologous to the LSD1-coding gene. Here, we demonstrate that the protein encoded by AOF1 represents a second mammalian flavin-dependent histone demethylase, named LSD2. The new demethylase is strictly specific for mono- and dimethylated Lys4 of histone H3, recognizes a long stretch of the H3 N-terminal tail, senses the presence of additional epigenetic marks on the histone substrate, and is covalently inhibited by tranylcypromine. As opposed to LSD1, LSD2 does not form a biochemically stable complex with the C-terminal domain of the corepressor protein CoREST. Furthermore, LSD2 contains a CW-type zinc finger motif with potential zinc-binding sites that are not present in LSD1. We conclude that mammalian LSD2 represents a new flavin-dependent H3-Lys4 demethylase that features substrate specificity properties highly similar to those of LSD1 but is very likely to be part of chromatin-remodeling complexes that are distinct from those involving LSD1.


Journal of Biological Chemistry | 2007

Structural basis of LSD1-CoREST selectivity in histone H3 recognition.

Federico Forneris; Claudia Binda; Antonio Adamo; Elena Battaglioli; Andrea Mattevi

Histone demethylase LSD1 regulates transcription by demethylating Lys4 of histone H3. The crystal structure of the enzyme in complex with CoREST and a substrate-like peptide inhibitor highlights an intricate network of interactions and a folded conformation of the bound peptide. The core of the peptide structure is formed by Arg2, Gln5, and Ser10, which are engaged in specific intramolecular H-bonds. Several charged side chains on the surface of the substrate-binding pocket establish electrostatic interactions with the peptide. The three-dimensional structure predicts that methylated Lys4 binds in a solvent inaccessible position in front of the flavin cofactor. This geometry is fully consistent with the demethylation reaction being catalyzed through a flavin-mediated oxidation of the substrate amino-methyl group. These features dictate the exquisite substrate specificity of LSD1 and provide a structural framework to explain the fine tuning of its catalytic activity and the active role of CoREST in substrate recognition.


Science | 2010

Structures of C3B in Complex with Factors B and D Give Insight Into Complement Convertase Formation.

Federico Forneris; Daniel Ricklin; Jin Wu; Apostolia Tzekou; Rachel S. Wallace; John D. Lambris; Piet Gros

A Safety Catch on Immune Response The complement system is an integral part of the innate immune system. When triggered, it initiates a cascade that marks intruders for elimination and stimulates immune responses. The key amplification step is cleavage of a complex comprising the complement fragment C3b and factor B (C3bB) by factor D (FD). Forneris et al. (p. 1816) now describe the crystal structure of C3bB and its complex with FD. The structures support a mechanism in which membrane-bound C3b stabilizes an open form of factor B (FB) that has its scissile bond accessible. FD binds through a site distant from its catalytic center to the open form of FB, which activates FD. The two conformational equilibria represent a double safety-catch that would allow tight regulation of this immune response pathway. A double-safety–catch mechanism controls amplification of the complement cascade during immune responses. Activation of the complement cascade induces inflammatory responses and marks cells for immune clearance. In the central complement-amplification step, a complex consisting of surface-bound C3b and factor B is cleaved by factor D to generate active convertases on targeted surfaces. We present crystal structures of the pro-convertase C3bB at 4 angstrom resolution and its complex with factor D at 3.5 angstrom resolution. Our data show how factor B binding to C3b forms an open “activation” state of C3bB. Factor D specifically binds the open conformation of factor B through a site distant from the catalytic center and is activated by the substrate, which displaces factor D’s self-inhibitory loop. This concerted proteolytic mechanism, which is cofactor-dependent and substrate-induced, restricts complement amplification to C3b-tagged target cells.


Trends in Biochemical Sciences | 2008

LSD1: oxidative chemistry for multifaceted functions in chromatin regulation

Federico Forneris; Claudia Binda; Elena Battaglioli; Andrea Mattevi

Three years after its discovery, lysine-specific demethylase 1 remains at the forefront of chromatin research. Its demethylase activity on Lys4 of histone H3 supports its role in gene repression. By contrast, the biochemical mechanisms underlying lysine-specific demethylase 1 involvement in transcriptional activation are not firmly established. Structural studies highlight a specific binding site for the histone H3 N-terminal tail and a catalytic machinery that is closely related to that of other flavin-dependent amine oxidases. These insights are crucial for the development of demethylation inhibitors. Furthermore, the exploration of putative non-histone substrates and potential signaling roles of hydrogen peroxide produced by the demethylation reaction could lead to new paradigms in chromatin biology.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Multiple pathways guide oxygen diffusion into flavoenzyme active sites

Riccardo Baron; Conor T. Riley; Pirom Chenprakhon; Kittisak Thotsaporn; Remko T. Winter; Andrea Alfieri; Federico Forneris; Willem J. H. van Berkel; Pimchai Chaiyen; Marco W. Fraaije; Andrea Mattevi; J. Andrew McCammon

Dioxygen (O2) and other gas molecules have a fundamental role in a variety of enzymatic reactions. However, it is only poorly understood which O2 uptake mechanism enzymes employ to promote efficient catalysis and how general this is. We investigated O2 diffusion pathways into monooxygenase and oxidase flavoenzymes, using an integrated computational and experimental approach. Enhanced-statistics molecular dynamics simulations reveal spontaneous protein-guided O2 diffusion from the bulk solvent to preorganized protein cavities. The predicted protein-guided diffusion paths and the importance of key cavity residues for oxygen diffusion were verified by combining site-directed mutagenesis, rapid kinetics experiments, and high-resolution X-ray structures. This study indicates that monooxygenase and oxidase flavoenzymes employ multiple funnel-shaped diffusion pathways to absorb O2 from the solvent and direct it to the reacting C4a atom of the flavin cofactor. The difference in O2 reactivity among dehydrogenases, monooxygenases, and oxidases ultimately resides in the fine modulation of the local environment embedding the reactive locus of the flavin.


Journal of Biological Chemistry | 2006

A Highly Specific Mechanism of Histone H3-K4 Recognition by Histone Demethylase LSD1

Federico Forneris; Claudia Binda; Annachiara Dall'Aglio; Marco W. Fraaije; Elena Battaglioli; Andrea Mattevi

Human lysine-specific demethylase (LSD1) is a chromatin-modifying enzyme that specifically removes methyl groups from mono- and dimethylated Lys4 of histone H3 (H3-K4). We used a combination of in vivo and in vitro experiments to characterize the substrate specificity and recognition by LSD1. Biochemical assays on histone peptides show that essentially all epigenetic modifications on the 21 N-terminal amino acids of histone H3 cause a significant reduction in enzymatic activity. Replacement of Lys4 with Arg greatly enhances binding affinity, and a histone peptide incorporating this mutation has a strong inhibitory power. Conversely, a peptide bearing a trimethylated Lys4 is only a weak inhibitor of the enzyme. Rapid kinetics measurements evidence that the enzyme is efficiently reoxidized by molecular oxygen with a second-order rate constant of 9.6 × 103 m-1 s-1, and that the presence of the reaction product does not greatly influence the rate of flavin reoxidation. In vivo experiments provide a correlation between the in vitro inhibitory properties of the tested peptides and their ability of affecting endogenous LSD1 activity. Our results show that epigenetic modifications on histone H3 need to be removed before Lys4 demethylation can efficiently occur. The complex formed by LSD1 with histone deacetylases 1/2 may function as a “double-blade razor” that first eliminates the acetyl groups from acetylated Lys residues and then removes the methyl group from Lys4. We suggest that after H3-K4 demethylation, LSD1 recruits the forthcoming chromatin remodelers leading to the introduction of gene repression marks.


Cell Reports | 2012

Assembly and Regulation of the Membrane Attack Complex Based on Structures of C5B6 and Sc5B9.

Michael A. Hadders; Doryen Bubeck; Pietro Roversi; Svetlana Hakobyan; Federico Forneris; B. Paul Morgan; Michael K. Pangburn; Oscar Llorca; Susan M. Lea; Piet Gros

Activation of the complement system results in formation of membrane attack complexes (MACs), pores that disrupt lipid bilayers and lyse bacteria and other pathogens. Here, we present the crystal structure of the first assembly intermediate, C5b6, together with a cryo-electron microscopy reconstruction of a soluble, regulated form of the pore, sC5b9. Cleavage of C5 to C5b results in marked conformational changes, distinct from those observed in the homologous C3-to-C3b transition. C6 captures this conformation, which is preserved in the larger sC5b9 assembly. Together with antibody labeling, these structures reveal that complement components associate through sideways alignment of the central MAC-perforin (MACPF) domains, resulting in a C5b6-C7-C8β-C8α-C9 arc. Soluble regulatory proteins below the arc indicate a potential dual mechanism in protection from pore formation. These results provide a structural framework for understanding MAC pore formation and regulation, processes important for fighting infections and preventing complement-mediated tissue damage.

Collaboration


Dive into the Federico Forneris's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blerida Banushi

University College London

View shared research outputs
Top Co-Authors

Avatar

Paul Gissen

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Ricklin

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge