Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Federico Iacovelli is active.

Publication


Featured researches published by Federico Iacovelli.


ACS Nano | 2013

Temperature-controlled encapsulation and release of an active enzyme in the cavity of a self-assembled DNA nanocage

Sissel Juul; Federico Iacovelli; Mattia Falconi; Sofie Louise Kragh; Brian Christensen; Rikke Frøhlich; Oskar Franch; Emil L. Kristoffersen; Magnus Stougaard; Kam W. Leong; Yi-Ping Ho; Esben S. Sørensen; Victoria Birkedal; Alessandro Desideri; Birgitta R. Knudsen

We demonstrate temperature-controlled encapsulation and release of the enzyme horseradish peroxidase using a preassembled and covalently closed three-dimensional DNA cage structure as a controllable encapsulation device. The utilized cage structure was covalently closed and composed of 12 double-stranded B-DNA helices that constituted the edges of the structure. The double stranded helices were interrupted by short single-stranded thymidine linkers constituting the cage corners except for one, which was composed by four 32 nucleotide long stretches of DNA with a sequence that allowed them to fold into hairpin structures. As demonstrated by gel-electrophoretic and fluorophore-quenching experiments this design imposed a temperature-controlled conformational transition capability to the structure, which allowed entrance or release of an enzyme cargo at 37 °C while ensuring retainment of the cargo in the central cavity of the cage at 4 °C. The entrapped enzyme was catalytically active inside the DNA cage and was able to convert substrate molecules penetrating the apertures in the DNA lattice that surrounded the central cavity of the cage.


Cell Cycle | 2015

Molecular mechanism of statin-mediated LOX-1 inhibition

Silvia Biocca; Federico Iacovelli; Sara Matarazzo; Giulia Vindigni; Francesco Oteri; Alessandro Desideri; Mattia Falconi

Statins are largely used in clinics in the treatment of patients with cardiovascular diseases for their effect on lowering circulating cholesterol. Lectin-like oxidized low-density lipoprotein (LOX-1), the primary receptor for ox-LDL, plays a central role in the pathogenesis of atherosclerosis and cardiovascular disorders. We have recently shown that chronic exposure of cells to lovastatin disrupts LOX-1 receptor cluster distribution in plasma membranes, leading to a marked loss of LOX-1 function. Here we investigated the molecular mechanism of statin-mediated LOX-1 inhibition and we demonstrate that all tested statins are able to displace the binding of fluorescent ox-LDL to LOX-1 by a direct interaction with LOX-1 receptors in a cell-based binding assay. Molecular docking simulations confirm the interaction and indicate that statins completely fill the hydrophobic tunnel that crosses the C-type lectin-like (CTLD) recognition domain of LOX-1. Classical molecular dynamics simulation technique applied to the LOX-1 CTLD, considered in the entire receptor structure with or without a statin ligand inside the tunnel, indicates that the presence of a ligand largely increases the dimer stability. Electrophoretic separation and western blot confirm that different statins binding stabilize the dimer assembly of LOX-1 receptors in vivo. The simulative and experimental results allow us to propose a CTLD clamp motion, which enables the receptor-substrate coupling. These findings reveal a novel and significant functional effect of statins.


Archives of Biochemistry and Biophysics | 2013

Simulative and experimental investigation on the cleavage site that generates the soluble human LOX-1

Silvia Biocca; Tania Arcangeli; Elisa Tagliaferri; Barbara Testa; Giulia Vindigni; Francesco Oteri; Alessandra Giorgi; Federico Iacovelli; Giuseppe Novelli; Alessandro Desideri; Mattia Falconi

Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a scavenger receptor that mediates the recognition, the binding and internalization of ox-LDL. A truncated soluble form of LOX-1 (sLOX-1) has been identified that, at elevated levels, has been associated to acute coronary syndrome. Human sLOX-1 is the extracellular part of membrane LOX-1 which is cleaved in the NECK domain with a mechanism that has not yet been identified. Purification of human sLOX-1 has been carried out to experimentally identify the cleavage site region within the NECK domain. Molecular modelling and classical molecular dynamics simulation techniques have been used to characterize the structural and dynamical properties of the LOX-1 NECK domain in the presence and absence of the CTLD recognition region, taking into account the obtained proteolysis results. The simulative data indicate that the NECK domain is stabilized by the coiled-coil heptad repeat motif along the simulations, shows a definite flexibility pattern and is characterized by specific electrostatic potentials. The detection of a mobile inter-helix space suggests an explanation for the in vivo susceptibility of the NECK domain to the proteolytic cleavage, validating the assumption that the NECK domain sequence is composed of a coiled-coil motif destabilized in specific regions of functional significance.


Neurobiology of Disease | 2016

Structural insights into the multi-determinant aggregation of TDP-43 in motor neuron-like cells

Francesca Bozzo; I. Salvatori; Federico Iacovelli; A. Mirra; S. Rossi; Mauro Cozzolino; Mattia Falconi; C. Valle; Maria Teresa Carrì

TDP-43 is aggregated in patients with ALS and FLTD through mechanisms still incompletely understood. Since aggregation in the cytosol is most probably responsible for the delocalization and loss of proper RNA-binding function of TDP-43 in the nucleus, interception of the formation of aggregates may represent a useful therapeutic option. In this study, we investigated the relative importance of the N-terminal and C-terminal moieties of TDP-43 in the aggregation process and the weight of each of the six cysteine residues in determining unfolding and aggregation of the different domains. We report that cytoplasmic inclusions formed by WT and mutant TDP-43 in motor neuron-like NSC34 cells are redox-sensitive only in part, and contain at least two components, i.e. oligomers and large aggregates, that are made of different molecular species. The two N-terminal cysteine residues contribute to the seeding for the first step in oligomerization, which is then accomplished by mechanisms depending on the four cysteines in the RNA-recognition motifs. Cysteine-independent large aggregates contain unfolded isoforms of the protein, held together by unspecific hydrophobic interactions. Interestingly, truncated isoforms are entrapped exclusively in oligomers. Ab initio modeling of TDP-43 structure, molecular dynamics and molecular docking analysis indicate a differential accessibility of cysteine residues that contributes to aggregation propensity. We propose a model of TDP-43 aggregation involving cysteine-dependent and cysteine-independent stages that may constitute a starting point to devise strategies counteracting the formation of inclusions in TDP-43 proteinopathies.


Journal of Chemical Information and Modeling | 2016

A Simple and Fast Semiautomatic Procedure for the Atomistic Modeling of Complex DNA Polyhedra

Cassio Alves; Federico Iacovelli; Mattia Falconi; Francesca Cardamone; Blasco Morozzo della Rocca; Cristiano L. P. Oliveira; Alessandro Desideri

A semiautomatic procedure to build complex atomistic covalently linked DNA nanocages has been implemented in a user-friendly, free, and fast program. As a test set, seven different truncated DNA polyhedra, composed by B-DNA double helices connected through short single-stranded linkers, have been generated. The atomistic structures, including a tetrahedron, a cube, an octahedron, a dodecahedron, a triangular prism, a pentagonal prism, and a hexagonal prism, have been probed through classical molecular dynamics and analyzed to evaluate their structural and dynamical properties and to highlight possible building faults. The analysis of the simulated trajectories also allows us to investigate the role of the different geometries in defining nanocages stability and flexibility. The data indicate that the cages are stable and that their structural and dynamical parameters measured along the trajectories are slightly affected by the different geometries. These results demonstrate that the constraints imposed by the covalent links induce an almost identical conformational variability independently of the three-dimensional geometry and that the program presented here is a reliable and valid tool to engineer DNA nanostructures.


RSC Advances | 2016

Comparative simulative analysis of single and double stranded truncated octahedral DNA nanocages

Federico Iacovelli; Mattia Falconi; Birgitta R. Knudsen; Alessandro Desideri

An entirely double stranded truncated octahedral DNA nanocage structure has been modeled in silico and the molecular dynamics simulation technique has been used to characterize its dynamical properties. In this polyhedron, unlike other previously simulated truncated octahedral cages, the linker regions are represented by double helices. Simulations of nanocages, with single or double stranded linkers, have been carried out to evaluate differences in their dynamic behavior. The results indicate a higher rigidity of the double stranded nanocage in comparison with the structure sharing the same geometry but having single stranded linkers. In detail the highly constrained geometry of the entirely double stranded DNA cage generates a distortion of the polyhedron and a fixed orientation of the double helices that results in constant exposure of selected bases on the cage external surface. These bases may represent the preferential sites for chemical modifications endowing the structure with specific molecular recognition capabilities.


FEBS Journal | 2015

Decoding the conformation-linked functional properties of nucleic acids by the use of computational tools

Federico Iacovelli; Mattia Falconi

DNA and RNA are large and flexible polymers selected by nature to transmit information. The most common DNA three‐dimensional structure is represented by the double helix, but this biopolymer is extremely flexible and polymorphic, and can easily change its conformation to adapt to different interactions and purposes. DNA can also adopt singular topologies, giving rise, for instance, to supercoils, formed because of the limited free rotation of the DNA domain flanking a replication or transcription complex. Our understanding of the importance of these unusual or transient structures is growing, as recent studies of DNA topology, supercoiling, knotting and linking have shown that the geometric changes can drive, or strongly influence, the interactions between protein and DNA, so altering its own metabolism. On the other hand, the unique self‐recognition properties of DNA, determined by the strict Watson–Crick rules of base pairing, make this material ideal for the creation of self‐assembling, predesigned nanostructures. The construction of such structures is one of the main focuses of the thriving area of DNA nanotechnology, where several assembly strategies have been employed to build increasingly complex DNA nanostructures. DNA nanodevices can have direct applications in biomedicine, but also in the materials science field, requiring the immersion of DNA in an environment far from the physiological one. Crucial help in the understanding and planning of natural and artificial nanostructures is given by modern computer simulation techniques, which are able to provide a reliable structural and dynamic description of nucleic acids.


Journal of the American Chemical Society | 2017

Simulative and Experimental Characterization of a pH-Dependent Clamp-like DNA Triple-Helix Nanoswitch

Federico Iacovelli; Andrea Idili; Alessandro Benincasa; Davide Mariottini; Alessio Ottaviani; Mattia Falconi; Francesco Ricci; Alessandro Desideri

Here we couple experimental and simulative techniques to characterize the structural/dynamical behavior of a pH-triggered switching mechanism based on the formation of a parallel DNA triple helix. Fluorescent data demonstrate the ability of this structure to reversibly switch between two states upon pH changes. Two accelerated, half microsecond, MD simulations of the system having protonated or unprotonated cytosines, mimicking the pH 5.0 and 8.0 conditions, highlight the importance of the Hoogsteen interactions in stabilizing the system, finely depicting the time-dependent disruption of the hydrogen bond network. Urea-unfolding experiments and MM/GBSA calculations converge in indicating a stabilization energy at pH 5.0, 2-fold higher than that observed at pH 8.0. These results validate the pH-controlled behavior of the designed structure and suggest that simulative approaches can be successfully coupled with experimental data to characterize responsive DNA-based nanodevices.


Journal of Molecular Modeling | 2013

A structural modeling approach for the understanding of initiation and elongation of ALS-linked superoxide dismutase fibrils

Mattia Falconi; Federico Iacovelli; Alessandro Desideri

AbstractFamilial amyotrophic lateral sclerosis caused by mutations in copper-zinc superoxide dismutase (SOD1) is characterized by the presence of SOD1-rich inclusions in spinal cords. It has been shown that a reduced intra-subunit disulfide bridge apo-SOD1 can rapidly initiate fibrillation forming an inter-subunits disulfide under mild, physiologically accessible conditions. Once initiated, elongation can proceed via recruitment of either apo or partially metallated disulfide-intact SOD1 and the presence of copper, but not zinc, ions inhibit fibrillation. We propose a structural model, refined through molecular dynamics simulations, that, taking into account these experimental findings, provides a molecular explanation for the initiation and the elongation of SOD1 fibrils in physiological conditions. The model indicates the occurrence of a new dimeric unit, prone to interact one with the other due to the presence of a wide hydrophobic surface and specific electrostatic interactions. The model has dimensions consistent with the SOD1 fibril size observed through electron microscopy and provides a structural basis for the understanding of SOD1 fibrillation. FigureALS-linked superoxide dismutase fibrils


Nanomedicine: Nanotechnology, Biology and Medicine | 2018

Selective targeting and degradation of doxorubicin-loaded folate-functionalized DNA nanocages

Sofia Raniolo; Giulia Vindigni; Alessio Ottaviani; Valeria Unida; Federico Iacovelli; Antonio Manetto; Mariangela Figini; Lorenzo Stella; Alessandro Desideri; Silvia Biocca

Selective targeting is a crucial property of nanocarriers used for drug delivery in cancer therapy. We generated biotinylated octahedral DNA nanocages functionalized with folic acid through bio-orthogonal conjugation chemistry. Molecular modelling indicated that a distance of about 2.5 nm between folic acid and DNA nanocage avoids steric hindrance with the folate receptor. HeLa cells, a folate receptor positive tumour cell line, internalize folate-DNA nanocages with efficiency greater than 40 times compared to cells not expressing the folate receptors. Functionalized DNA nanocages are highly stable, not cytotoxic and can be efficiently loaded with the chemotherapeutic agent doxorubicin. After entry into cells, doxorubicin-loaded nanoparticles are confined in vesicular structures, indicating that DNA nanocages traffic through the endocytic pathway. Doxorubicin release from loaded DNA cages, facilitated by low pH of endocytic vesicles, induces toxic pathways that, besides selectively killing folate receptor-positive cancer cells, leads to cage degradation avoiding nanoparticles accumulation inside cells.

Collaboration


Dive into the Federico Iacovelli's collaboration.

Top Co-Authors

Avatar

Mattia Falconi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Alessandro Desideri

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Alessio Ottaviani

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Silvia Biocca

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Francesca Cardamone

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Francesco Oteri

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Giulia Vindigni

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Idili

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Bianca Maria Ciminelli

University of Rome Tor Vergata

View shared research outputs
Researchain Logo
Decentralizing Knowledge