Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Federico Mocchegiani is active.

Publication


Featured researches published by Federico Mocchegiani.


The Journal of Infectious Diseases | 2003

Use of the Quorum-Sensing Inhibitor RNAIII-Inhibiting Peptide to Prevent Biofilm Formation In Vivo by Drug-Resistant Staphylococcus epidermidis

Naomi Balaban; Andrea Giacometti; Oscar Cirioni; Yael Gov; Roberto Ghiselli; Federico Mocchegiani; Claudio Viticchi; Maria Simona Del Prete; Vittorio Saba; Giorgio Scalise; Giorgio Dell’Acqua

Staphylococcus epidermidis is a frequent cause of infections associated with foreign bodies and indwelling medical devices. The bacteria are capable of surviving antibiotic treatment through encapsulation into biofilms. RNAIII-inhibiting peptide (RIP) is a heptapeptide that inhibits S. aureus pathogenesis by disrupting quorum-sensing mechanisms. In this study, RIP inhibited drug-resistant S. epidermidis biofilm formation through a mechanism similar to that evidenced for S. aureus. RIP is synergistic with antibiotics in eliminating 100% of graft-associated in vivo S. epidermidis infections, which suggests that RIP may be used to coat medical devices to prevent staphylococcal infections. Disruption of cell-cell communication can prevent infections associated with antibiotic-resistant strains.


Antimicrobial Agents and Chemotherapy | 2007

Treatment of Staphylococcus aureus Biofilm infection by the quorum sensing inhibitor RIP

Naomi Balaban; Oscar Cirioni; Andrea Giacometti; Roberto Ghiselli; Joel Braunstein; Carmela Silvestri; Federico Mocchegiani; Vittorio Saba; Giorgio Scalise

ABSTRACT The quorum-sensing inhibitor RIP inhibits staphylococcal TRAP/agr systems and both TRAP- and agr-negative strains are deficient in biofilm formation in vivo, indicating the importance of quorum sensing to biofilms in the host. RIP injected systemically into rats has been found to have strong activity in preventing methicillin-resistant Staphylococcus aureus graft infections, suggesting that RIP can be used as a therapeutic agent.


Antimicrobial Agents and Chemotherapy | 2003

RNA III Inhibiting Peptide Inhibits In Vivo Biofilm Formation by Drug-Resistant Staphylococcus aureus

Andrea Giacometti; Oscar Cirioni; Yael Gov; Roberto Ghiselli; Maria Simona Del Prete; Federico Mocchegiani; Vittorio Saba; Fiorenza Orlando; Giorgio Scalise; Naomi Balaban; Giorgio Dell'Acqua

ABSTRACT Staphylococcus aureus is a prevalent cause of bacterial infections associated with indwelling medical devices. RNA III inhibiting peptide (RIP) is known to inhibit S. aureus pathogenesis by disrupting quorum-sensing mechanisms. RIP was tested in the present study for its ability to inhibit S. aureus biofilm formation in a rat Dacron graft model. The activity of RIP was synergistic with those of antibiotics for the complete prevention of drug-resistant S. aureus infections.


Antimicrobial Agents and Chemotherapy | 2006

LL-37 Protects Rats against Lethal Sepsis Caused by Gram-Negative Bacteria

Oscar Cirioni; Andrea Giacometti; Roberto Ghiselli; Cristina Bergnach; Fiorenza Orlando; Carmela Silvestri; Federico Mocchegiani; Alberto Licci; Barbara Skerlavaj; Marco Rocchi; Vittorio Saba; Margherita Zanetti; Giorgio Scalise

ABSTRACT We investigated the efficacy of LL-37, the C-terminal part of the only cathelicidin in humans identified to date (termed human cationic antimicrobial protein), in three experimental rat models of gram-negative sepsis. Adult male Wistar rats (i) were given an intraperitoneal injection of 1 mg Escherichia coli 0111:B4 LPS, (ii) were given 2 × 1010 CFU of Escherichia coli ATCC 25922, or (iii) had intra-abdominal sepsis induced via cecal ligation and puncture. For each model, all animals were randomized to receive intravenously isotonic sodium chloride solution, 1-mg/kg LL-37, 1-mg/kg polymyxin B, 20-mg/kg imipenem, or 60-mg/kg piperacillin. Lethality; growth of bacteria in blood, peritoneum, spleen, liver, and mesenteric lymph nodes; and endotoxin and tumor necrosis factor alpha (TNF-α) concentrations in plasma were evaluated. All compounds reduced lethality compared to levels in controls. Endotoxin and TNF-α plasma levels were significantly higher in conventional antibiotic-treated rats than in LL-37- and polymyxin B-treated animals. All drugs tested significantly reduced bacterial growth compared to saline treatment. No statistically significant differences between LL-37 and polymyxin B were noted for antimicrobial and antiendotoxin activities. LL-37 and imipenem proved to be the most effective treatments in reducing all variables measured. Due to its multifunctional properties, LL-37 may become an important future consideration for the treatment of sepsis.


The Journal of Infectious Diseases | 2006

RNAIII-Inhibiting Peptide Significantly Reduces Bacterial Load and Enhances the Effect of Antibiotics in the Treatment of Central Venous Catheter—Associated Staphylococcus aureus Infections

Oscar Cirioni; Andrea Giacometti; Roberto Ghiselli; Giorgio Dell’Acqua; Fiorenza Orlando; Federico Mocchegiani; Carmela Silvestri; Alberto Licci; Vittorio Saba; Giorgio Scalise; Naomi Balaban

BACKGROUND Medical devices used in clinical practice are often associated with biofilm-associated staphylococcal infections. METHODS An in vitro antibiotic susceptibility assay of Staphylococcus aureus biofilms using 96-well polystyrene tissue-culture plates was performed to test the effects of RNAIII-inhibiting peptide (RIP), ciprofloxacin, imipenem, and vancomycin. Efficacy studies were performed using a rat model of central venous catheter (CVC)-associated infection. Twenty-four hours after implantation, the catheters were filled with RIP (1 mg/mL). Thirty minutes later, rats were challenged, via the CVC, with 1.0 x 10(6) cfu of S. aureus strain Smith diffuse. The antibiotic-lock technique was begun 24 h later. RESULTS Minimum inhibitory concentrations of antibiotics in biofilms were at least 4-fold higher than those against the freely growing planktonic cells. When they were first treated with RIP, the cells in biofilms became as susceptible to antibiotics as did planktonic cells. These data were confirmed by the in vivo studies. In particular, when CVCs were treated with both RIP and antibiotics, the biofilm bacterial load was further reduced to 1 x 10(1) cfu/mL, and bacteremia was not detected, suggesting that there was 100% elimination of bacteremia and a 6 log10 reduction in biofilm bacterial load. CONCLUSION RIP significantly reduces bacterial load and enhances the effect of antibiotics in the treatment of CVC-associated S. aureus infections.


Circulation | 2003

Prophylactic efficacy of topical temporin A and RNAIII-inhibiting peptide in a subcutaneous rat Pouch model of graft infection attributable to staphylococci with intermediate resistance to glycopeptides.

Oscar Cirioni; Andrea Giacometti; Roberto Ghiselli; Giorgio Dell’Acqua; Yael Gov; Wojciech Kamysz; Jerzy Łukasiak; Federico Mocchegiani; Fiorenza Orlando; Giuseppina D’Amato; Naomi Balaban; Vittorio Saba; Giorgio Scalise

Background—Bacteria that adhere to implanted medical devices play an important role in industry and in modern medicine. Staphylococci are among the most common pathogens that cause biomaterial infections. Vascular prosthetic graft infection is one of the most feared complications that the vascular surgeon treats, frequently resulting in prolonged hospitalization, organ failure, amputation, and death. A rat model was used to investigate the topical efficacies of temporin A and the quorum-sensing inhibitor RNAIII-inhibiting protein (RIP) as prophylactic agents of vascular prosthetic graft infections caused by Staphylococcus aureus and Staphylococcus epidermidis with intermediate resistance to glycopeptides. Methods and Results—Graft infections were established in the back subcutaneous tissue of adult male Wistar rats by implantation of Dacron prostheses 1 cm2 followed by topical inoculation with 2×107 colony-forming units of bacterial strains. The study included, for each staphylococcal strain, a control group (no graft contamination), a contaminated group that did not receive antibiotic prophylaxis, and 6 contaminated groups that received grafts soaked with temporin A, RIP, rifampin, temporin A plus RIP, RIP plus rifampin, or temporin A plus RIP. The infection was evaluated by quantitative agar culture. When tested alone, temporin A and RIP showed comparable efficacies, and their efficacies were significantly higher than that of rifampin against both strains. All combinations showed efficacies significantly higher than that of each single compound. The combinations of temporin A and RIP exerted the strongest antistaphylococcal efficacies, eliminating infection by 100%. Conclusions—The results of the present study make these molecules potentially useful for antimicrobial chemoprophylaxis in vascular surgery.


Antimicrobial Agents and Chemotherapy | 2002

Potential Therapeutic Role of Cationic Peptides in Three Experimental Models of Septic Shock

Andrea Giacometti; Oscar Cirioni; Roberto Ghiselli; Federico Mocchegiani; Maria Simona Del Prete; Claudio Viticchi; Wojciech Kamysz; Elżbieta Łempicka; Vittorio Saba; Giorgio Scalise

ABSTRACT The therapeutic efficacies of buforin II, indolicidin, and KFFKFFKFF were investigated in three rat models of septic shock: (i) rats injected intraperitoneally with 10 μg of Escherichia coli O111:B4 lipopolysaccharide, (ii) rats given an intraperitoneal injection of 2 × 1010 CFU of Escherichia coli ATCC 25922, and (iii) rats in which intra-abdominal sepsis was induced via cecal ligation and single puncture. All animals were randomized to receive parenterally isotonic sodium chloride solution, 1 mg of buforin II per kg of body weight, 1 mg of indolicidin per kg, 1 mg of KFFKFFKFF per kg, and 20 mg of imipenem per kg. The main outcome measures were bacterial growth in abdominal exudate and plasma, endotoxin and tumor necrosis factor alpha (TNF-α) concentrations in plasma, and lethality. Treatment with all peptides resulted in significant reductions in plasma endotoxin and TNF-α concentrations compared with those resulting from the imipenem and saline treatments. On the other hand, imipenem treatment significantly reduced the levels of bacterial growth compared with the reductions achieved with the peptide and saline treatments. All compounds reduced the rates of death compared to that for the controls. Although the peptides demonstrated lower levels of antimicrobial activity than imipenem, they exhibited the dual properties of antimicrobial and antiendotoxin agents.


Antimicrobial Agents and Chemotherapy | 2004

A Chimeric Peptide Composed of a Dermaseptin Derivative and an RNA III-Inhibiting Peptide Prevents Graft-Associated Infections by Antibiotic-Resistant Staphylococci

Naomi Balaban; Yael Gov; Andrea Giacometti; Oscar Cirioni; Roberto Ghiselli; Federico Mocchegiani; Fiorenza Orlando; Giuseppina D'Amato; Vittorio Saba; Giorgio Scalise; Sabina Bernes; Amram Mor

ABSTRACT Staphylococcal bacteria are a prevalent cause of infections associated with foreign bodies and indwelling medical devices. Bacteria are capable of escaping antibiotic treatment through encapsulation into biofilms. RNA III-inhibiting peptide (RIP) is a heptapeptide that inhibits staphylococcal biofilm formation by obstructing quorum-sensing mechanisms. K4-S4(1-13)a is a 13-residue dermaseptin derivative (DD13) believed to kill bacteria via membrane disruption. We tested each of these peptides as well as a hybrid construct, DD13-RIP, for their ability to inhibit bacterial proliferation and suppress quorum sensing in vitro and for their efficacy in preventing staphylococcal infection in a rat graft infection model with methicillin-resistant Staphylococcus aureus (MRSA) or S. epidermidis (MRSE). In vitro, proliferation assays demonstrated that RIP had no inhibitory effect, while DD13-RIP and DD13 were equally effective, and that the chimeric peptide but not DD13 was slightly more effective than RIP in inhibiting RNA III synthesis, a regulatory RNA molecule important for staphylococcal pathogenesis. In vivo, the three peptides reduced graft-associated bacterial load in a dose-dependent manner, but the hybrid peptide was most potent in totally preventing staphylococcal infections at the lowest dose. In addition, each of the peptides acted synergistically with antibiotics. The data indicate that RIP and DD13 act in synergy by attacking bacteria simultaneously by two different mechanisms. Such a chimeric peptide may be useful for coating medical devices to prevent drug-resistant staphylococcal infections.


European Journal of Vascular and Endovascular Surgery | 2010

Daptomycin and rifampin alone and in combination prevent vascular graft biofilm formation and emergence of antibiotic resistance in a subcutaneous rat pouch model of staphylococcal infection.

Oscar Cirioni; Federico Mocchegiani; Roberto Ghiselli; Carmela Silvestri; Eleonora Gabrielli; Elisa Marchionni; Fiorenza Orlando; D. Nicolini; A. Risaliti; Andrea Giacometti

OBJECTIVE To investigate the efficacy of daptomycin and rifampin either alone or in combination in preventing prosthesis biofilm in a rat model of staphylococcal vascular graft infection. DESIGN Prospective, randomised, controlled animal study. MATERIALS Graft infections were established in the back subcutaneous tissue of adult male Wistar rats by implantation of Dacron prostheses followed by topical inoculation with 2×10(7) colony forming units of Staphylococcus aureus, strain Smith diffuse. METHODS The study included a control group, a contaminated group that did not receive any antibiotic prophylaxis and three contaminated groups that received intra-peritoneal daptomycin, rifampin-soaked graft and daptomycin plus rifampin-soaked graft, respectively. Each group included 15 animals. The infection burden was evaluated by using sonication and quantitative agar culture. Moreover, an in vitro antibiotic susceptibility assay for S. aureus biofilms was performed to elucidate the same activity. RESULTS When tested alone, daptomycin and rifampin showed good efficacies. Their combination showed efficacies significantly higher than that of each single compound. The in vitro studies showed that minimum inhibitory concentration and minimum bactericidal concentration values for daptomycin were lower in presence of rifampin. Daptomycin prevented the emergence of rifampin resistance. CONCLUSION Daptomycin is an important candidate for prevention of staphylococcal biofilm-related infection and rifampin could serve as an interesting anti-staphylococcal antibiotic enhancer.


Antimicrobial Agents and Chemotherapy | 2005

Comparative Efficacies of Quinupristin-Dalfopristin, Linezolid, Vancomycin, and Ciprofloxacin in Treatment, Using the Antibiotic-Lock Technique, of Experimental Catheter-Related Infection Due to Staphylococcus aureus

Andrea Giacometti; Oscar Cirioni; Roberto Ghiselli; Fiorenza Orlando; Federico Mocchegiani; Carmela Silvestri; Alberto Licci; Matteo De Fusco; Mauro Provinciali; Vittorio Saba; Giorgio Scalise

ABSTRACT We performed in vitro studies to elucidate the bactericidal activity of the antibiotics in an adherent-cell biofilm model. Efficacy studies were performed in a staphylococcal central venous catheter (CVC) infection rat model. Silastic catheters were implanted into the superior cava. Via the CVC the rats were challenged with 1.0 × 106 CFU of a live Staphylococcus aureus strain. Twenty-four hours later, the antibiotic-lock technique was started. All animals were randomized to receive daily isotonic sodium chloride solution, quinupristin-dalfopristin (Q/D), linezolid, vancomycin, or ciprofloxacin at the minimal bactericidal concentration (MBC) and at 1,024 μg/ml in a volume of 0.1 ml that filled the CVC. The main outcome measures were MICs and MBCs for both planktonic and adherent cells, quantitative culture of the catheters and surrounding venous tissues, and quantitative peripheral blood cultures. The killing activities of all antibiotics against the adherent bacteria were at least fourfold lower than those against freely growing cells, with the exception of Q/D, which showed comparable activities against both adherent and planktonic organisms. Overall, Q/D at 1,024 μg/ml produced the greatest reduction in the number of cells recovered from the catheters, while at the same concentration, Q/D and vancomycin demonstrated higher activities than ciprofloxacin or linezolid in reducing the number of organisms recovered from the blood cultures. This study points out that treatment outcome of device-related infections cannot be predicted by the results of a standard susceptibility test such as the MIC. Our findings suggest that the clinically used antibiotics cannot eradicate the CVC infection through the antibiotic-lock technique, even at a concentration of 1,024 μg/ml.

Collaboration


Dive into the Federico Mocchegiani's collaboration.

Top Co-Authors

Avatar

Roberto Ghiselli

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Andrea Giacometti

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Oscar Cirioni

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Vittorio Saba

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Giorgio Scalise

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Fiorenza Orlando

Nuclear Regulatory Commission

View shared research outputs
Top Co-Authors

Avatar

Carmela Silvestri

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniele Nicolini

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge