Federico Remes Lenicov
University of Buenos Aires
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Federico Remes Lenicov.
Journal of Experimental Medicine | 2009
Ana Ceballos; Federico Remes Lenicov; Juan Sabatté; Christian Rodriguez Rodrigues; Mercedes Cabrini; Carolina Jancic; Silvina Raiden; Mónica Donaldson; Rodolfo Agustín Pasqualini; Clara I. Marín-Briggiler; Mónica H. Vazquez-Levin; Francisco Capani; Sebastian Amigorena; Jorge Geffner
Semen is the main vector for HIV-1 dissemination worldwide. It contains three major sources of infectious virus: free virions, infected leukocytes, and spermatozoa-associated virions. We focused on the interaction of HIV-1 with human spermatozoa and dendritic cells (DCs). We report that heparan sulfate is expressed in spermatozoa and plays an important role in the capture of HIV-1. Spermatozoa-attached virus is efficiently transmitted to DCs, macrophages, and T cells. Interaction of spermatozoa with DCs not only leads to the transmission of HIV-1 and the internalization of the spermatozoa but also results in the phenotypic maturation of DCs and the production of IL-10 but not IL-12p70. At low values of extracellular pH (∼6.5 pH units), similar to those found in the vaginal mucosa after sexual intercourse, the binding of HIV-1 to the spermatozoa and the consequent transmission of HIV-1 to DCs were strongly enhanced. Our observations support the notion that far from being a passive carrier, spermatozoa acting in concert with DCs might affect the early course of sexual transmission of HIV-1 infection.
Journal of Cell Biology | 2009
Ana Ceballos; Federico Remes Lenicov; Juan Sabatté; Christian Rodriguez Rodrigues; Mercedes Cabrini; Carolina Jancic; Silvina Raiden; Mónica Donaldson; Rodolfo Agustín Pasqualini; Clara I. Marín-Briggiler; Mónica H. Vazquez-Levin; Francisco Capani; Sebastian Amigorena; Jorge Geffner
Results Flow cytometry showed that heparan sulfate is expressed in spermatozoa. Heparan sulfate plays an important role in the capture of HIV-1, as demonstrated by the inhibitory effect induced by heparine (50 U/ml) (>70% capture inhibition, n = 15) and heparinase II pre-treatment of the spermatozoa (>50% capture inhibition, n = 6). By contrast, treatment with the inhibitor of mannose receptor mannan (5 mg/ml) slightly inhibited virus attachment (> 20% capture inhibition, n = 10). Spermatozoa-attached viruses were efficiently transmitted to DCs through a cellto-cell contact-dependent mechanism. Fluorescence, confocal and electronic microscopy showed that this process was associated to the internalization of a fraction of the spermatozoa. This interaction also resulted in the phenotypic maturation of DCs (up-regulation of CD80, CD86, CD40, CD83 and CCR7), and the production of IL-10 but not IL-12p70. Finally, we found that acidic extracellular pH levels, similar to those found in the vaginal mucosa after sexual intercourse, increased more than four times (n = 12) the binding of HIV-1 to the spermatozoa and the subsequent transmission of HIV-1 to DCs.
Journal of Immunology | 2011
Juan Sabatté; Wolfgang Faigle; Ana Ceballos; Willy Morelle; Christian Rodriguez Rodrigues; Federico Remes Lenicov; Michel Thépaut; Franck Fieschi; Emilio L. Malchiodi; Marisa M. Fernández; Fernando Arenzana-Seisdedos; Hugues Lortat-Jacob; Jean-Claude Michalski; Jorge Geffner; Sebastian Amigorena
The C-type lectin receptor dendritic cell-specific ICAM-3–grabbing nonintegrin (DC-SIGN) is an important player in the recognition of pathogens by dendritic cells. A plethora of pathogens including viruses, bacteria, parasites, and fungi are recognized by DC-SIGN through both mannose and fucose-containing glycans expressed on the pathogen surface. In this study, we identified semen clusterin as a novel DC-SIGN ligand. Semen clusterin, but not serum clusterin, expresses an extreme abundance of fucose-containing blood-type Ags such as Lex and Ley, which are both excellent DC-SIGN ligands. These motifs enable semen clusterin to bind DC-SIGN with very high affinity (Kd 76 nM) and abrogate the binding of HIV-1 to DC-SIGN. Depletion of clusterin from semen samples, however, did not completely prevent the ability of semen to inhibit the capture of HIV-1 by DC-SIGN, supporting that besides clusterin, semen contains other DC-SIGN ligands. Further studies are needed to characterize these ligands and define their contribution to the DC-SIGN–blocking activity mediated by semen. Clusterin is an enigmatic protein involved in a variety of physiologic and pathologic processes including inflammation, atherosclerosis, and cancer. Our results uncover an unexpected heterogeneity in the glycosylation pattern of clusterin and suggest that the expression of high concentrations of fucose-containing glycans enables semen clusterin to display a unique set of biological functions that might affect the early course of sexually transmitted infectious diseases.
Microbes and Infection | 2011
Juan Sabatté; Federico Remes Lenicov; Mercedes Cabrini; Christian Rodriguez Rodrigues; Matias Ostrowski; Ana Ceballos; Sebastian Amigorena; Jorge Geffner
Unprotected sexual intercourse between discordant couples is by far the most frequent mode of HIV-1 (human immunodeficiency virus type 1) transmission being semen the main vector for HIV-1 dissemination worldwide. Semen is usually considered merely as a vehicle for HIV-1 transmission. In this review we discuss recent observations suggesting that beyond being a carrier for virus particles semen markedly influences the early events involved in sexual transmission of HIV through the mucosal barriers.
Journal of Immunology | 2012
Federico Remes Lenicov; Christian Rodriguez Rodrigues; Juan Sabatté; Mercedes Cabrini; Carolina Jancic; Matias Ostrowski; Antonela Merlotti; Heidi Gonzalez; Andrea Alonso; Rodolfo Agustín Pasqualini; Carlos Davio; Jorge Geffner; Ana Ceballos
Seminal plasma is not just a carrier for spermatozoa. It contains high concentrations of cytokines, chemokines, and other biological compounds that are able to exert potent effects on the immune system of the receptive partner. Previous studies have shown that semen induces an acute inflammatory response at the female genital mucosa after coitus. Moreover, it induces regulatory mechanisms that allow the fetus (a semiallograft) to grow and develop in the uterus. The mechanisms underlying these regulatory mechanisms, however, are poorly understood. In this study, we show that seminal plasma redirects the differentiation of human dendritic cells (DCs) toward a regulatory profile. DCs differentiated from human monocytes in the presence of high dilutions of seminal plasma did not express CD1a but showed high levels of CD14. They were unable to develop a fully mature phenotype in response to LPS, TNF-α, CD40L, Pam2CSK4 (TLR2/6 agonist), or Pam3CSK4 (TLR1/2 agonist). Upon activation, they produced low amounts of the inflammatory cytokines IL-12p70, IL-1β, TNF-α, and IL-6, but expressed a high ability to produce IL-10 and TGF-β. Inhibition of the PG receptors E-prostanoid receptors 2 and 4 prevented the tolerogenic effect induced by seminal plasma on the phenotype and function of DCs, suggesting that E-series PGs play a major role. By promoting a tolerogenic profile in DCs, seminal plasma might favor fertility, but might also compromise the capacity of the receptive partner to mount an effective immune response against sexually transmitted pathogens.
Journal of Immunology | 2014
Mercedes Borge; Federico Remes Lenicov; Paula Romina Nannini; María M. de los Ríos Alicandú; Enrique Podaza; Ana Ceballos; Horacio Fernández Grecco; María Cabrejo; Raimundo Fernando Bezares; Pablo Morande; Pablo Oppezzo; Mirta Giordano; Romina Gamberale
Chronic lymphocytic leukemia (CLL) is characterized by the progressive accumulation of clonal B lymphocytes. Proliferation occurs in lymphoid tissues upon interaction of leukemic cells with a supportive microenvironment. Therefore, the mobilization of tissue-resident CLL cells into the circulation is a useful therapeutic strategy to minimize the reservoir of tumor cells within survival niches. Because the exit of normal lymphocytes from lymphoid tissues depends on the presence of sphingosine-1 phosphate (S1P) and the regulated expression of S1P receptor-1 (S1PR1), we investigated whether the expression and function of S1PR1 can be modulated by key microenvironment signals. We found that activation of CLL cells with CXCL12, fibroblast CD40L+, BCR cross-linking, or autologous nurse-like cells reduces their S1PR1 expression and the migratory response toward S1P. Moreover, we found that S1PR1 expression was reduced in the proliferative/activated subset of leukemic cells compared with the quiescent subset from the same patient. Similarly, bone marrow–resident CLL cells expressing high levels of the activation marker CD38 showed a lower expression of S1PR1 compared with CD38low counterparts. Finally, given that treatment with BCR-associated kinase inhibitors induces a transient redistribution of leukemic cells from lymphoid tissues to circulation, we studied the effect of the Syk inhibitors piceatannol and R406 on S1PR1 expression and function. We found that they enhance S1PR1 expression in CLL cells and their migratory response toward S1P. Based on our results, we suggest that the regulated expression of S1PR1 might modulate the egress of the leukemic clone from lymphoid tissues.
PLOS ONE | 2011
Christian Rodriguez Rodrigues; Mercedes Cabrini; Federico Remes Lenicov; Juan Sabatté; Ana Ceballos; Carolina Jancic; Silvina Raiden; Matias Ostrowski; Claudia Silberstein; Jorge Geffner
Plasmacytoid dendritic cells (pDCs) play a major role in anti-viral immunity by virtue of their ability to produce high amounts of type I interferons (IFNs) and a variety of inflammatory cytokines and chemokines in response to viral infections. Since recent studies have established that pDCs accumulate at the site of virus entry in the mucosa, here we analyzed whether epithelial cells were able to modulate the function of pDCs. We found that the epithelial cell lines HT-29 and Caco-2, as well as a primary culture of human renal tubular epithelial cells (HRTEC), induced the phenotypic maturation of pDCs stimulating the production of inflammatory cytokines. By contrast, epithelial cells did not induce any change in the phenotype of conventional or myeloid DCs (cDCs) while significantly stimulated the production of the anti-inflammatory cytokine IL-10. Activation of pDCs by epithelial cells was prevented by Bafilomycin A1, an inhibitor of endosomal acidification as well as by the addition of RNase to the culture medium, suggesting the participation of endosomal TLRs. Interestingly, the cross-talk between both cell populations was shown to be associated to an increased expression of TLR7 and TLR9 by pDCs and the production of LL37 by epithelial cells, an antimicrobial peptide able to bind and transport extracellular nucleic acids into the endosomal compartments. Interestingly, epithelium-activated pDCs impaired the establishment of a productive HIV infection in two susceptible target cells through the stimulation of the production of type I IFNs, highlighting the anti-viral efficiency of this novel activation pathway.
Oncotarget | 2017
Maia Cabrera; Emiliana Echeverría; Federico Remes Lenicov; Georgina A. Cardama; Nazareno Gonzalez; Carlos Davio; Natalia Fernández; Pablo Lorenzano Menna
Rac1 GTPase has long been recognized as a critical regulatory protein in different cellular and molecular processes involved in cancer progression, including acute myeloid leukemia. Here we show the antitumoral activity of ZINC69391 and 1A-116, two chemically-related Rac1 pharmacological inhibitors, on a panel of four leukemic cell lines representing different levels of maturation. Importantly, we show that the main mechanism involved in the antitumoral effect triggered by the Rac1 inhibitors comprises the induction of the mitochondrial or intrinsic apoptotic pathway. Interestingly, Rac1 inhibition selectively induced apoptosis on patient-derived leukemia cells but not on normal mononuclear cells. These results show the potential therapeutic benefits of targeting Rac1 pathway in hematopoietic malignancies.
Frontiers in Immunology | 2018
Federico Remes Lenicov; Ana Luz Paletta; Melina Gonzalez Prinz; Augusto Varese; Clara E. Pavillet; Álvaro Lopez Malizia; Juan Sabatté; Jorge Geffner; Ana Ceballos
Inflammatory dendritic cells (DCs) are a distinct subset of DCs that derive from circulating monocytes infiltrating injured tissues. Monocytes can differentiate into DCs with different functional signatures, depending on the presence of environment stimuli. Among these stimuli, transforming growth factor-beta (TGF-β) and prostaglandin E2 (PGE2) have been shown to modulate the differentiation of monocytes into DCs with different phenotypes and functional profiles. In fact, both mediators lead to contrasting outcomes regarding the production of inflammatory and anti-inflammatory cytokines. Previously, we have shown that human semen, which contains high concentrations of PGE2, promoted the differentiation of DCs into a tolerogenic profile through a mechanism dependent on signaling by E-prostanoid receptors 2 and 4. Notably, this effect was induced despite the huge concentration of TGF-β present in semen, suggesting that PGE2 overrides the influence exerted by TGF-β. No previous studies have analyzed the joint actions induced by PGE2 and TGF-β on the function of monocytes or DCs. Here, we analyzed the phenotype and functional profile of monocyte-derived DCs differentiated in the presence of TGF-β and PGE2. DC differentiation guided by TGF-β alone enhanced the expression of CD1a and abrogated LPS-induced expression of IL-10, while differentiation in the presence of PGE2 impaired CD1a expression, preserved CD14 expression, abrogated IL-12 and IL-23 production, stimulated IL-10 production, and promoted the expansion of FoxP3+ regulatory T cells in a mixed lymphocyte reaction. Interestingly, DCs differentiated in the presence of TGF-β and PGE2 showed a phenotype and functional profile closely resembling those induced by PGE2 alone. Finally, we found that PGE2 inhibited TGF-β signaling through an action exerted by EP2 and EP4 receptors coupled to cyclic AMP increase and protein kinase A activity. These results indicate that PGE2 suppresses the influence exerted by TGF-β during DC differentiation, imprinting a tolerogenic signature. High concentrations of TGF-β and PGE2 are usually found in infectious, autoimmune, and neoplastic diseases. Our observations suggest that in these scenarios PGE2 might play a mandatory role in the acquisition of a regulatory profile by DCs.
PLOS ONE | 2013
Christian Rodriguez Rodrigues; Federico Remes Lenicov; Carolina Jancic; Juan Sabatté; Mercedes Cabrini; Ana Ceballos; Antonela Merlotti; Heidi Gonzalez; Matias Ostrowski; Jorge Geffner
Macrophages are one of the most important HIV-1 target cells. Unlike CD4+ T cells, macrophages are resistant to the cytophatic effect of HIV-1. They are able to produce and harbor the virus for long periods acting as a viral reservoir. Candida albicans (CA) is a commensal fungus that colonizes the portals of HIV-1 entry, such as the vagina and the rectum, and becomes an aggressive pathogen in AIDS patients. In this study, we analyzed the ability of CA to modulate the course of HIV-1 infection in human monocyte-derived macrophages. We found that CA abrogated HIV-1 replication in macrophages when it was evaluated 7 days after virus inoculation. A similar inhibitory effect was observed in monocyte-derived dendritic cells. The analysis of the mechanisms responsible for the inhibition of HIV-1 production in macrophages revealed that CA efficiently sequesters HIV-1 particles avoiding its infectivity. Moreover, by acting on macrophages themselves, CA diminishes their permissibility to HIV-1 infection by reducing the expression of CD4, enhancing the production of the CCR5-interacting chemokines CCL3/MIP-1α, CCL4/MIP-1β, and CCL5/RANTES, and stimulating the production of interferon-α and the restriction factors APOBEC3G, APOBEC3F, and tetherin. Interestingly, abrogation of HIV-1 replication was overcome when the infection of macrophages was evaluated 2-3 weeks after virus inoculation. However, this reactivation of HIV-1 infection could be silenced by CA when added periodically to HIV-1-challenged macrophages. The induction of a silent HIV-1 infection in macrophages at the periphery, where cells are continuously confronted with CA, might help HIV-1 to evade the immune response and to promote resistance to antiretroviral therapy.