Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Federico Turkheimer is active.

Publication


Featured researches published by Federico Turkheimer.


The Lancet | 2001

In-vivo measurement of activated microglia in dementia

Annachiara Cagnin; David J. Brooks; Angus Kennedy; Roger N. Gunn; Ralph Myers; Federico Turkheimer; Terry Jones; Richard B. Banati

BACKGROUND Activated microglia have a key role in the brains immune response to neuronal degeneration. The transition of microglia from the normal resting state to the activated state is associated with an increased expression of receptors known as peripheral benzodiazepine binding sites, which are abundant on cells of mononuclear phagocyte lineage. We used brain imaging to study expression of these sites in healthy individuals and patients with Alzheimers disease. METHODS We studied 15 normal individuals (age 32-80 years), eight patients with Alzheimers disease, and one patient with minimal cognitive impairment. Quantitative in-vivo measurements of glial activation were obtained with positron emission tomography (PET) and carbon-11-labelled (R)-PK11195, a specific ligand for the peripheral benzodiazepine binding site. FINDINGS In normal individuals, regional [11C](R)-PK11195 binding did not significantly change with age, except in the thalamus, where an age-dependent increase was found. By contrast, patients with Alzheimers disease showed significantly increased regional [11C](R)-PK11195 binding in the entorhinal, temporoparietal, and cingulate cortex. INTERPRETATION In-vivo detection of increased [11C](R)-PK11195 binding in Alzheimer-type dementia, including mild and early forms, suggests that microglial activation is an early event in the pathogenesis of the disease.


Annals of Neurology | 2011

Inflammation after trauma: Microglial activation and traumatic brain injury

Anil Ramlackhansingh; David J. Brooks; Richard Greenwood; Subrata K. Bose; Federico Turkheimer; Kirsi M. Kinnunen; Steve M. Gentleman; Rolf A. Heckemann; Karen Gunanayagam; Giorgio Gelosa; David J. Sharp

Patient outcome after traumatic brain injury (TBI) is highly variable. The underlying pathophysiology of this is poorly understood, but inflammation is potentially an important factor. Microglia orchestrate many aspects of this response. Their activation can be studied in vivo using the positron emission tomography (PET) ligand [11C](R)PK11195 (PK). In this study, we investigate whether an inflammatory response to TBI persists, and whether this response relates to structural brain abnormalities and cognitive function.


Neurology | 2009

Conversion of amyloid positive and negative MCI to AD over 3 years An 11C-PIB PET study

Aren Okello; J. Koivunen; Paul Edison; Hilary Archer; Federico Turkheimer; Kjell Någren; R. Bullock; Zuzana Walker; Angus Kennedy; Nick C. Fox; J. O. Rinne; David J. Brooks

Background: Patients with amnestic mild cognitive impairment (MCI) represent an important clinical group as they are at increased risk of developing Alzheimer disease (AD). 11C-PIB PET is an in vivo marker of brain amyloid load. Objective: To assess the rates of conversion of MCI to AD during a 3-year follow-up period and to compare levels of amyloid deposition between MCI converters and nonconverters. Methods: Thirty-one subjects with MCI with baseline 11C-PIB PET, MRI, and neuropsychometry have been clinically followed up for 1 to 3 years (2.68 ± 0.6 years). Raised cortical 11C-PIB binding in subjects with MCI was detected with region of interest analysis and statistical parametric mapping. Results: Seventeen of 31 (55%) subjects with MCI had increased 11C-PIB retention at baseline and 14 of these 17 (82%) clinically converted to AD during follow-up. Only one of the 14 PIB-negative MCI cases converted to AD. Of the PIB-positive subjects with MCI, half (47%) converted to AD within 1 year of baseline PIB PET, these faster converters having higher tracer-retention values than slower converters in the anterior cingulate (p = 0.027) and frontal cortex (p = 0.031). Seven of 17 (41%) subjects with MCI with known APOE status were ε4 allele carriers, this genotype being associated with faster conversion rates in PIB-positive subjects with MCI (p = 0.035). Conclusions: PIB-positive subjects with mild cognitive impairment (MCI) are significantly more likely to convert to AD than PIB-negative patients, faster converters having higher PIB retention levels at baseline than slower converters. In vivo detection of amyloid deposition in MCI with PIB PET provides useful prognostic information.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Emergence of resting state networks in the preterm human brain

Valentina Doria; Christian F. Beckmann; Tomoki Arichi; Nazakat Merchant; Michela Groppo; Federico Turkheimer; Serena J. Counsell; Maria Murgasova; Paul Aljabar; Rita G. Nunes; David J. Larkman; Geraint Rees; A. David Edwards

The functions of the resting state networks (RSNs) revealed by functional MRI remain unclear, but it has seemed possible that networks emerge in parallel with the development of related cognitive functions. We tested the alternative hypothesis: that the full repertoire of resting state dynamics emerges during the period of rapid neural growth before the normal time of birth at term (around 40 wk of gestation). We used a series of independent analytical techniques to map in detail the development of different networks in 70 infants born between 29 and 43 wk of postmenstrual age (PMA). We characterized and charted the development of RSNs from recognizable but often fragmentary elements at 30 wk of PMA to full facsimiles of adult patterns at term. Visual, auditory, somatosensory, motor, default mode, frontoparietal, and executive control networks developed at different rates; however, by term, complete networks were present, several of which were integrated with thalamic activity. These results place the emergence of RSNs largely during the period of rapid neural growth in the third trimester of gestation, suggesting that they are formed before the acquisition of cognitive competencies in later childhood.


European Journal of Neuroscience | 1999

Redefining the functional organization of working memory processes within human lateral prefrontal cortex.

Adrian M. Owen; Nicholas J. Herrod; David K. Menon; John C. Clark; Steve P. M. J. Downey; T. Adrian Carpenter; P S Minhas; Federico Turkheimer; Emma J. Williams; Trevor W. Robbins; Barbara J. Sahakian; Michael Petrides; John D. Pickard

It is widely held that the frontal cortex plays a critical part in certain aspects of spatial and non‐spatial working memory. One unresolved issue is whether there are functionally distinct subdivisions of the lateral frontal cortex that subserve different aspects of working memory. The present study used positron emission tomography (PET) to demonstrate that working memory processes within the human mid‐dorsolateral and mid‐ventrolateral frontal regions are organized according to the type of processing required rather than according to the nature (i.e. spatial or non‐spatial), of the information being processed, as has been widely assumed. Two spatial working memory tasks were used which varied in the extent to which they required different executive processes. During a ‘spatial span’ task that required the subject to hold a sequence of five previously remembered locations in working memory a significant change in blood‐flow was observed in the right mid‐ventrolateral frontal cortex, but not in the anatomically and cytoarchitectonically distinct mid‐dorsolateral frontal‐lobe region. By contrast, during a ‘2‐back’ task that required the subject to continually update and manipulate an ongoing sequence of locations within working memory, significant blood flow increases were observed in both mid‐ventrolateral and mid‐dorsolateral frontal regions. When the two working memory tasks were compared directly, the one that emphasized manipulation of information within working memory yielded significantly greater activity in the right mid‐dorsolateral frontal cortex only. This dissociation provides unambiguous evidence that the mid‐dorsolateral and mid‐ventrolateral frontal cortical areas make distinct functional contributions to spatial working memory and corresponds with a fractionation of working memory processes in psychological terms.


Neurology | 2009

Microglial activation and amyloid deposition in mild cognitive impairment: a PET study.

Aren Okello; Paul Edison; Hilary Archer; Federico Turkheimer; Jonathan Kennedy; R. Bullock; Zuzana Walker; Angus Kennedy; Nick C. Fox; David J. Brooks

Background: Activated microglia may play a role in the pathogenesis of Alzheimer disease (AD) as they cluster around beta-amyloid (Aβ) plaques. They are, therefore, a potential therapeutic target in both AD and its prodrome amnestic mild cognitive impairment (MCI). Objective: To characterize in vivo with 11C-(R)-PK11195 and 11C-PIB PET the distribution of microglial activation and amyloid deposition in patients with amnestic MCI. Methods: Fourteen subjects with MCI had 11C-(R)-PK11195 and 11C-PIB PET with psychometric tests. Results: Seven out of 14 (50%) patients with MCI had increased cortical 11C-PIB retention (p < 0.001) while 5 out of 13 (38%) subjects with MCI showed increased 11C-(R)-PK11195 uptake. The MCI subgroup with increased 11C-PIB retention also showed increased cortical 11C-(R)-PK11195 binding (p < 0.036) though this increase only remained significant in frontal cortex after a correction for multiple comparisons. There was no correlation between regional levels of 11C-(R)-PK11195 and 11C-PIB binding in individual patients with MCI: only three of the five MCI cases with increased 11C-(R)-PK11195 binding had increased levels of 11C-PIB retention. Conclusions: Our findings indicate that, while amyloid deposition and microglial activation can be detected in vivo in around 50% of patients with mild cognitive impairment (MCI), these pathologies can occur independently. The detection of microglial activation in patients with MCI suggests that anti-inflammatory therapies may be relevant to the prevention of AD.


The Journal of Neuroscience | 2006

Converging Language Streams in the Human Temporal Lobe

Galina Spitsyna; Jane E. Warren; Sophie K. Scott; Federico Turkheimer; Richard Wise

There is general agreement that, after initial processing in unimodal sensory cortex, the processing pathways for spoken and written language converge to access verbal meaning. However, the existing literature provides conflicting accounts of the cortical location of this convergence. Most aphasic stroke studies localize verbal comprehension to posterior temporal and inferior parietal cortex (Wernicke’s area), whereas evidence from focal cortical neurodegenerative syndromes instead implicates anterior temporal cortex. Previous functional imaging studies in normal subjects have failed to reconcile these opposing positions. Using a functional imaging paradigm in normal subjects that used spoken and written narratives and multiple baselines, we demonstrated common activation during implicit comprehension of spoken and written language in inferior and lateral regions of the left anterior temporal cortex and at the junction of temporal, occipital, and parietal cortex. These results indicate that verbal comprehension uses unimodal processing streams that converge in both anterior and posterior heteromodal cortical regions in the left temporal lobe.


Neurology | 1999

[11C](R)-PK11195 positron emission tomography imaging of activated microglia in vivo in Rasmussen’s encephalitis

Richard B. Banati; Gerhard W. Goerres; Ralph Myers; Roger N. Gunn; Federico Turkheimer; G.W. Kreutzberg; David J. Brooks; T. Jones; John S. Duncan

Article abstract This study was designed to explore the feasibility of PET using [11C](R)-PK11195 as an in vivo marker of activated microglia/brain macrophages for the assessment of neuroinflammation in Rasmussen’s encephalitis (RE). [11C](R)-PK11195 PET was carried out in four normal subjects, two patients with histologically confirmed RE, and three patients with clinically stable hippocampal sclerosis and low seizure frequency. Binding potential maps showing specific binding of [11C](R)-PK11195 were generated for each subject. Regional binding potential values were calculated for anatomically defined regions of interest after coregistration to and spatial transformation into the subjects’ own MRI. In one patient with RE who underwent hemispherectomy, the resected, paraffin-embedded brain tissue was stained with an antibody (CR3/43) that labels activated human microglia. Whereas specific binding of [11C](R)-PK11195 in clinically stable hippocampal sclerosis was similar to that in normal brain, patients with RE showed a focal and diffuse increase in binding throughout the affected hemisphere. In RE, [11C](R)-PK11195 PET can reveal in vivo the characteristic, unilateral pattern known from postmortem neuropathologic study. PET imaging of activated microglia/brain macrophages offers a tool for investigation of a range of brain diseases where neuroinflammation is a component and in which conventional MRI does not unequivocally indicate an inflammatory tissue reaction. [11C](R)-PK11195 PET may help in the choice of appropriate biopsy sites and, further, may allow assessment of the efficacy of antiinflammatory disease–modifying treatment.


Journal of Cerebral Blood Flow and Metabolism | 2002

Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling.

Roger N. Gunn; Steve R. Gunn; Federico Turkheimer; John A. D. Aston; Vincent J. Cunningham

A kinetic modeling approach for the quantification of in vivo tracer studies with dynamic positron emission tomography (PET) is presented. The approach is based on a general compartmental description of the tracers fate in vivo and determines a parsimonious model consistent with the measured data. The technique involves the determination of a sparse selection of kinetic basis functions from an overcomplete dictionary using the method of basis pursuit denoising. This enables the characterization of the systems impulse response function from which values of the systems macro parameters can be estimated. These parameter estimates can be obtained from a region of interest analysis or as parametric images from a voxel-based analysis. In addition, model order estimates are returned that correspond to the number of compartments in the estimated compartmental model. Validation studies evaluate the methods performance against two preexisting data led techniques, namely, graphical analysis and spectral analysis. Application of this technique to measured PET data is demonstrated using [11C]diprenorphine (opiate receptor) and [11C]WAY-100635 (5-HT1A receptor). Although the method is presented in the context of PET neuroreceptor binding studies, it has general applicability to the quantification of PET/SPECT radiotracer studies in neurology, oncology, and cardiology.


American Journal of Psychiatry | 2011

Dopamine Synthesis Capacity Before Onset of Psychosis: A Prospective [18F]-DOPA PET Imaging Study

Oliver Howes; Subrata K. Bose; Federico Turkheimer; Isabel Valli; Alice Egerton; Lucia Valmaggia; Robin M. Murray; Philip McGuire

OBJECTIVE While there is robust evidence of elevated dopamine synthesis capacity once a psychotic disorder has developed, little is known about whether it is altered prior to the first episode of frank illness. The authors addressed this issue by measuring dopamine synthesis capacity in individuals at ultra-high risk of psychosis and then following them to determine their clinical outcome. METHOD This prospective study included 30 patients who met standard criteria for being at ultra-high risk of psychosis and 29 healthy volunteers. Participants were scanned using [(18)F]6-fluoro-L-dopa positron emission tomography. The ultra-high-risk patients were scanned at presentation and followed up for at least 3 years to determine their clinical outcome. Six patients had comorbid schizotypal personality disorder and were excluded from the analysis (data are provided for comparison). Of the remaining patients, nine developed a psychotic disorder (psychotic transition group) and 15 did not (nontransition group). RESULTS There was a significant effect of group on striatal dopamine synthesis capacity. The psychotic transition group had greater dopamine synthesis capacity in the striatum (effect size=1.18) and its associative subdivision (effect size=1.24) than did the healthy comparison subjects and showed a positive correlation between dopamine synthesis capacity and symptom severity. Dopamine synthesis capacity was also significantly greater in the psychotic transition group than in the nontransition group. CONCLUSIONS These findings provide evidence that the onset of frank psychosis is preceded by presynaptic dopaminergic dysfunction. Further research is needed to determine the specificity of elevated dopamine synthesis capacity to particular psychotic disorders.

Collaboration


Dive into the Federico Turkheimer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Brooks

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rainer Hinz

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Sudhakar Selvaraj

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lula Rosso

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge