Fedor Anatol'evich Sukochev
Flinders University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fedor Anatol'evich Sukochev.
Israel Journal of Mathematics | 1997
V. I. Chilin; P. G. Dodds; Fedor Anatol'evich Sukochev
We show that ifE is a separable symmetric Banach function space on the positive half-line thenE has the Kadec-Klee property if and only if, for every semifinite von Neumann algebra (M, τ), the associated spaceE(M, τ) ofτ-measurable operators has the Kadec-Klee property.
Israel Journal of Mathematics | 2000
Fedor Anatol'evich Sukochev
AbstractWe classify, up to a linear-topological isomorphism, all separableLp-spaces, 1≤p<∞, associated with von Neumann algebras of type I. In particular, anyLp-space associated with an infinite-dimensional atomic von Neumann algebra is isomorphic tolp, or toCp, or to
Integral Equations and Operator Theory | 1999
P. G. Dodds; Theresa K.-Y. Dodds; B. de Pagter; Fedor Anatol'evich Sukochev
Integral Equations and Operator Theory | 2001
P. G. Dodds; S. V. Ferleger; B. de Pagter; Fedor Anatol'evich Sukochev
Sp = (\sum {_{n = 1}^\infty C_p^n )_{l_p } }
Studia Mathematica | 2000
Philippe Clément; B. de Pagter; Fedor Anatol'evich Sukochev; H. Witvliet
Journal of Functional Analysis | 1997
P. G. Dodds; Theresa K.-Y. Dodds; B. de Pagter; Fedor Anatol'evich Sukochev
. Further, anyLp-space,p∈[1,∞),p∈2 associated with an infinite-dimensional von Neumann algebraM of type I is isomorphic to one of the following nine Banach spaces: lp, Lp, SP, Cp, Sp ⊕ Lp, Lp(Sp), Cp ⊕ Lp, Lp(Cp), Cp ⊕ Lp(Sp). In the casep=1 all the spaces in this list are pairwise non-isomorphic.
Journal of Functional Analysis | 2004
B. de Pagter; Fedor Anatol'evich Sukochev
We prove a weak-type estimate for the absolute value mapping in the preduals of semifinite factors which extends an earlier result of Kosaki for the trace class.
Matematicheskie Zametki | 2004
Сергей Владимирович Асташкин; Sergei Vladimirovich Astashkin; Федор Анатольевич Сукочев; Fedor Anatol'evich Sukochev
We study actions of the Vilenkin group ∏∞k=0ℤm(k) onLp-spaces associated with a semi-finite von Neumann algebra М, via a generalized triangular truncation operator. The systems of eigenspaces that arise contain the classical unbounded Vilenkin systems and we show that such systems with the inverse lexicographic enumeration form Schauder decompositions in all reflexive non-commutativeLp-spaces. This is a non-commutative analogue of a theorem of Paley for unbounded Vilenkin systems, which in the classical setting is due to W.S. Young, F. Schipp and P. Simon.
Uspekhi Matematicheskikh Nauk | 2006
Ален Л. Кери; Alan L. Carey; Федор Анатольевич Сукочев; Fedor Anatol'evich Sukochev
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya | 2003
П Г Доддс; P. G. Dodds; Бернардус де Пагтер; Bernardus de Pagter; Александр Андреевич Седаев; Alexsandr Andreevich Sedaev; Евгений Михайлович Семeнов; Evgenii Mikhailovich Semenov; Федор Анатольевич Сукочев; Fedor Anatol'evich Sukochev