Fedor M. Eroshkin
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fedor M. Eroshkin.
Development | 2004
N. Y. Martynova; Fedor M. Eroshkin; Galina V. Ermakova; Andrey V. Bayramov; Jessica Gray; Robert M. Grainger; Andrey G. Zaraisky
During early development of the nervous system in vertebrates, expression of the homeobox gene Anf/Hesx1/Rpx is restricted to the anterior neural plate subdomain corresponding to the presumptive forebrain. This expression is essential for normal forebrain development and ectopic expression of Xenopus Anf, Xanf1 (also known as Xanf-1), results in severe forebrain abnormalities. By use of transgenic embryos and a novel bi-colour reporter technique, we have identified a cis-regulatory element responsible for transcriptional repression of Xanf1 that defines its posterior expression limit within the neural plate. Using this element as the target in a yeast one-hybrid system, we identified two transcription factors, FoxA4a/Pintallavis and Xvent2 (also known as Xvent-2), which are normally expressed posterior to Xanf1. Overexpression of normal and dominant-negative versions of these factors, as well as inhibition of their mRNA translation by antisense morpholinos, show that they actually function as transcriptional repressors of Xanf1 just behind its posterior expression limit. The extremely high similarity of the identified Anf cis-regulatory sequences in Xenopus, chick and human, indicates that the mechanism restricting posterior expression of Anf in Xenopus is shared among vertebrates. Our findings support Nieuwkoops activation-transformation model for neural patterning, according to which the entire neurectoderm is initially specified towards an anterior fate, which is later suppressed posteriorly as part of the trunk formation process.
Gene | 2002
Fedor M. Eroshkin; Olga V. Kazanskaya; N. Y. Martynova; Andrey G. Zaraisky
Investigation of molecular mechanisms underlying early patterning of the nervous system is an important task of modern developmental biology. Previously, we identified a novel homeobox gene, Anf, that is expressed in the most anterior zone at the beginning of neuroectoderm specification. The expression pattern of Anf corresponds to primordia of the telencephalon and the rostral part of the diencephalon. In the present work, we investigated cis-regulation of expression of the Xenopus laevis Anf, Xanf-1. Two elements, highly conserved in Xenopus, chick and human, were identified within the Xanf-1 promoter region. The first element, located near position -500, is necessary for overall enhancement of the Xanf-1 expression. The second element, near position -200, is crucial for maintenance of the Xanf-1 expression at moderate levels and also for specific localization of the expression in the anterior neuroectoderm. Thus, the distal part of this element is responsible for suppression of Xanf-1 posterior to the normal expression domain of this gene. The data obtained corroborate with the Nieuwkoop two-signal model of neural induction. This model states that at the first step of induction, all neuroectoderm acquires potencies to develop toward forebrain structures, but later these potencies are suppressed in posterior regions.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Maria Suntsova; Elena Gogvadze; S. V. Salozhin; Nurshat Gaifullin; Fedor M. Eroshkin; Sergey E. Dmitriev; N. Y. Martynova; Kirill Kulikov; Galina Malakhova; Gulnur Tukhbatova; Alexey P. Bolshakov; Dmitry Ghilarov; Andrew Garazha; Alexander Aliper; Charles R. Cantor; Yuri Solokhin; Sergey Roumiantsev; P. M. Balaban; Alex Zhavoronkov; Anton Buzdin
Significance We identified a human-specific endogenous retroviral insert (hsERV) that acts as an enhancer for human PRODH, hsERV_PRODH. PRODH encodes proline dehydrogenase, which is involved in neuromediator synthesis in the CNS. We show that the hsERV_PRODH enhancer acts synergistically with the CpG island of PRODH and is regulated by methylation. We detected high PRODH expression in the hippocampus, which was correlated with the undermethylated state of this enhancer. PRODH regulatory elements provide neuron-specific transcription in hippocampal cells, and the mechanism of hsERV_PRODH enhancer activity involves the binding of transcriptional factor SOX2. Because PRODH is associated with several neurological disorders, we hypothesize that the human-specific regulation of PRODH by hsERV_PRODH may have played a role in human evolution by upregulating the expression of this important CNS-specific gene. Using a systematic, whole-genome analysis of enhancer activity of human-specific endogenous retroviral inserts (hsERVs), we identified an element, hsERVPRODH, that acts as a tissue-specific enhancer for the PRODH gene, which is required for proper CNS functioning. PRODH is one of the candidate genes for susceptibility to schizophrenia and other neurological disorders. It codes for a proline dehydrogenase enzyme, which catalyses the first step of proline catabolism and most likely is involved in neuromediator synthesis in the CNS. We investigated the mechanisms that regulate hsERVPRODH enhancer activity. We showed that the hsERVPRODH enhancer and the internal CpG island of PRODH synergistically activate its promoter. The enhancer activity of hsERVPRODH is regulated by methylation, and in an undermethylated state it can up-regulate PRODH expression in the hippocampus. The mechanism of hsERVPRODH enhancer activity involves the binding of the transcription factor SOX2, whch is preferentially expressed in hippocampus. We propose that the interaction of hsERVPRODH and PRODH may have contributed to human CNS evolution.
Developmental Dynamics | 2008
N. Y. Martynova; Fedor M. Eroshkin; L. V. Ermolina; Galina V. Ermakova; Anastasia L. Korotaeva; K. M. Smurova; Fatima K. Gyoeva; Andrey G. Zaraisky
The question of how subdivision of embryo into cell territories acquiring different fates is coordinated with morphogenetic movements shaping the embryonic body still remains poorly resolved. In the present report, we demonstrate that a key regulator of anterior neural plate patterning, the homeodomain transcriptional repressor Xanf1/Hesx1, can bind to the LIM‐domain protein Zyxin, which is known to regulate cell morphogenetic movements via influence on actin cytoskeleton dynamics. Using a set of deletion mutants, we found that the Engrailed‐type repressor domain of Xanf1 and LIM2‐domain of Zyxin are primarily responsible for interaction of these proteins. We also demonstrate that Zyxin overexpression in Xenopus embryos elicits effects similar to those observed in embryos with downregulated Xanf1. In contrast, when the repressor‐fused variant of Zyxin is expressed, the forebrain enlargements typical for embryos overexpressing Xanf1 develop. These results are consistent with a possible role of Zyxin as a negative modulator of Xanf1 transcriptional repressing activity. Developmental Dynamics 237:736–749, 2008.
Scientific Reports | 2016
Fedor M. Eroshkin; Alexey M. Nesterenko; A. V. Borodulin; N. Y. Martynova; Galina V. Ermakova; Fatima K. Gyoeva; E. E. Orlov; A. A. Belogurov; Konstantin A. Lukyanov; Andrey V. Bayramov; Andrey G. Zaraisky
Noggin4 is a Noggin family secreted protein whose molecular and physiological functions remain unknown. In this study, we demonstrate that in contrast to other Noggins, Xenopus laevis Noggin4 cannot antagonise BMP signalling; instead, it specifically binds to Wnt8 and inhibits the Wnt/β -catenin pathway. Live imaging demonstrated that Noggin4 diffusivity in embryonic tissues significantly exceeded that of other Noggins. Using the Fluorescence Recovery After Photobleaching (FRAP) assay and mathematical modelling, we directly estimated the affinity of Noggin4 for Wnt8 in living embryos and determined that Noggin4 fine-tune the Wnt8 posterior-to-anterior gradient. Our results suggest a role for Noggin4 as a unique, freely diffusing, long-range inhibitor of canonical Wnt signalling, thus explaining its ability to promote head development.
Mechanisms of Development | 2004
Andrey V. Bayramov; N. Y. Martynova; Fedor M. Eroshkin; Galina V. Ermakova; Andrey G. Zaraisky
Expression of the homeobox gene Xanf-1 starts within the presumptive forebrain primordium of the Xenopus embryo at the midgastrula stage and is inhibited by the late neurula. Such stage-specific inhibition is essential for the normal development as the experimental prolongation of the Xanf-1 expression elicits severe brain abnormalities. To identify transcriptional regulators that are responsible for the Xanf-1 inhibition, we have used the yeast one-hybrid system and identified a novel Xenopus homeobox gene X-nkx-5.1 that belongs to a family of Nkx-5.1 transcription factors. In terms of gene expression, X-nkx-5.1 shares many common features with its orthologs in other species, including expression in the embryonic brain and in the ciliated cells of the otic and lateral line placodes. However, we have also observed several features specific for X-nkx-5.1, such as expression in precursors of the epidermal ciliated cells that may indicate a possible common evolutionary origin of all ciliated cells derived from the embryonic ectoderm. Another specific feature is that the X-nkx-5.1 expression in the anterior neural plate starts early, within the area overlapping the Xanf-1 expression territory at the midneurula stage, and it correlates with the beginning of the Xanf-1 inhibition. Using various loss and gain-of-function techniques, including microinjections of antisense morpholino oligonucleotides and mRNA encoding for the X-nkx-5.1 and its dominant repressor and activator versions, we have shown that X-nkx-5.1 can indeed play a role of stage-specific inhibitor of Xanf-1 in the anterior neural plate during the Xenopus development.
Developmental Biology | 2013
N. Y. Martynova; L. V. Ermolina; Galina V. Ermakova; Fedor M. Eroshkin; Fatima K. Gyoeva; Natalia S. Baturina; Andrey G. Zaraisky
Zyxin is a cytoskeletal protein that controls cell movements by regulating actin filaments assembly, but it can also modulate gene expression owing to its interactions with the proteins involved in signaling cascades. Therefore, identification of proteins that interact with Zyxin in embryonic cells is a promising way to unravel mechanisms responsible for coupling of two major components of embryogenesis: morphogenetic movements and cell differentiation. Now we show that in Xenopus laevis embryos Zyxin can bind to and suppress activity of the primary effector of Sonic hedgehog (Shh) signaling cascade, the transcription factor Gli1. By using loss- and gain-of-function approaches, we demonstrate that Zyxin is essential for reduction of Shh signaling within the dorsal part of the neural tube of X. laevis embryo. Thus, our finding discloses a novel function of Zyxin in fine tuning of the central neural system patterning which is based on the ventral-to-dorsal gradient of Shh signaling.
The International Journal of Developmental Biology | 2012
A. V. Borodulin; Fedor M. Eroshkin; Andrey V. Bayramov; Andrey G. Zaraisky
We describe here the expression pattern of Noggin4 during the early development of the chick embryo (Gallus gallus). The expression of this gene starts with the onset of gastrulation (stage HH4), in two bilateral bands along the primitive streak, with a local maximum around Hensens node. By the end of gastrulation, Noggin4 transcripts are distributed diffusely throughout the epiblast, with the highest concentration in the head ectoderm. Interestingly, the expression of Noggin4 during the first half of gastrulation demonstrates a clear left-right asymmetry in Hensens node, being much more intensive in its right anterior portion. During neurulation, Noggin4 is expressed mainly in the neuroectoderm, with the most intensive expression in the head and lateral neural folds. In mesoderm derivatives, expression is seen in somites but not in the notochord. In general, primarily ectodermal and diffusive expression of Noggin4 in chick embryo, with a maximum in the anterior neurectoderm, resembles that of its ortholog in Xenopus, which indicates a conservative function of this gene in evolution.
Scientific Reports | 2016
Andrey V. Bayramov; Galina V. Ermakova; Fedor M. Eroshkin; Alexandr V. Kucheryavyy; N. Y. Martynova; Andrey G. Zaraisky
Accumulated evidence indicates that the core genetic mechanisms regulating early patterning of the brain rudiment in vertebrates are very similar to those operating during development of the anterior region of invertebrate embryos. However, the mechanisms underlying the morphological differences between the elaborate vertebrate brain and its simpler invertebrate counterpart remain poorly understood. Recently, we hypothesized that the emergence of the most anterior unit of the vertebrate brain, the telencephalon, could be related to the appearance in vertebrates’ ancestors of a unique homeobox gene, Anf/Hesx1(further Anf), which is absent from all invertebrates and regulates the earliest steps of telencephalon development in vertebrates. However, the failure of Anf to be detected in one of the most basal extant vertebrate species, the lamprey, seriously compromises this hypothesis. Here, we report the cloning of Anf in three lamprey species and demonstrate that this gene is indeed expressed in embryos in the same pattern as in other vertebrates and executes the same functions by inhibiting the expression of the anterior general regulator Otx2 in favour of the telencephalic regulator FoxG1. These results are consistent with the hypothesis that the Anf homeobox gene may have been important in the evolution of the telencephalon.
Russian Journal of Bioorganic Chemistry | 2016
N. Y. Martynova; Alexey M. Nesterenko; E. E. Orlov; Fedor M. Eroshkin; A. V. Borodulin; Andrey V. Bayramov; Andrey G. Zaraisky
We demonstrated that the secreted protein Noggin4 from Xenopus laevis was capable of the in vitro binding to the secreted factor Wnt8, one of the ligands of the Wnt/betaCatenin signaling pathway. It was also shown that posttranslational modifications occurring during secretion of these proteins from the embryonic cells were necessary for their effective interaction. Also, we proposed a method for the preparation of physiologically active secreted morphogenic proteins from the intercellular space of the Xenopus laevis embryos.