Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fei-Long Meng is active.

Publication


Featured researches published by Fei-Long Meng.


Cell | 2013

Mechanisms of programmed DNA lesions and genomic instability in the immune system.

Frederick W. Alt; Yu Zhang; Fei-Long Meng; Chunguang Guo; Bjoern Schwer

Chromosomal translocations involving antigen receptor loci are common in lymphoid malignancies. Translocations require DNA double-strand breaks (DSBs) at two chromosomal sites, their physical juxtaposition, and their fusion by end-joining. Ability of lymphocytes to generate diverse repertoires of antigen receptors and effector antibodies derives from programmed genomic alterations that produce DSBs. We discuss these lymphocyte-specific processes, with a focus on mechanisms that provide requisite DSB target specificity and mechanisms that suppress DSB translocation. We also discuss recent work that provides new insights into DSB repair pathways and the influences of three-dimensional genome organization on physiological processes and cancer genomes.


Cell | 2011

The RNA Exosome Targets the AID Cytidine Deaminase to Both Strands of Transcribed Duplex DNA Substrates

Uttiya Basu; Fei-Long Meng; Celia Keim; Veronika Grinstein; Evangelos Pefanis; Jennifer Eccleston; Tingting Zhang; Darienne Myers; Caitlyn R. Wasserman; Duane R. Wesemann; Kurt Januszyk; Richard I. Gregory; Haiteng Deng; Christopher D. Lima; Frederick W. Alt

Activation-induced cytidine deaminase (AID) initiates immunoglobulin (Ig) heavy-chain (IgH) class switch recombination (CSR) and Ig variable region somatic hypermutation (SHM) in B lymphocytes by deaminating cytidines on template and nontemplate strands of transcribed DNA substrates. However, the mechanism of AID access to the template DNA strand, particularly when hybridized to a nascent RNA transcript, has been an enigma. We now implicate the RNA exosome, a cellular RNA-processing/degradation complex, in targeting AID to both DNA strands. In B lineage cells activated for CSR, the RNA exosome associates with AID, accumulates on IgH switch regions in an AID-dependent fashion, and is required for optimal CSR. Moreover, both the cellular RNA exosome complex and a recombinant RNA exosome core complex impart robust AID- and transcription-dependent DNA deamination of both strands of transcribed SHM substrates in vitro. Our findings reveal a role for noncoding RNA surveillance machinery in generating antibody diversity.


Nature | 2015

Orientation-specific joining of AID-initiated DNA breaks promotes antibody class switching

Junchao Dong; Rohit A. Panchakshari; Tingting Zhang; Yu Zhang; Jiazhi Hu; Sabrina A. Volpi; Robin M. Meyers; Yu-Jui Ho; Zhou Du; Davide F. Robbiani; Fei-Long Meng; Monica Gostissa; Michel C. Nussenzweig; John P. Manis; Frederick W. Alt

During B-cell development, RAG endonuclease cleaves immunoglobulin heavy chain (IgH) V, D, and J gene segments and orchestrates their fusion as deletional events that assemble a V(D)J exon in the same transcriptional orientation as adjacent Cμ constant region exons. In mice, six additional sets of constant region exons (CHs) lie 100–200 kilobases downstream in the same transcriptional orientation as V(D)J and Cμ exons. Long repetitive switch (S) regions precede Cμ and downstream CHs. In mature B cells, class switch recombination (CSR) generates different antibody classes by replacing Cμ with a downstream CH (ref. 2). Activation-induced cytidine deaminase (AID) initiates CSR by promoting deamination lesions within Sμ and a downstream acceptor S region; these lesions are converted into DNA double-strand breaks (DSBs) by general DNA repair factors. Productive CSR must occur in a deletional orientation by joining the upstream end of an Sμ DSB to the downstream end of an acceptor S-region DSB. However, the relative frequency of deletional to inversional CSR junctions has not been measured. Thus, whether orientation-specific joining is a programmed mechanistic feature of CSR as it is for V(D)J recombination and, if so, how this is achieved is unknown. To address this question, we adapt high-throughput genome-wide translocation sequencing into a highly sensitive DSB end-joining assay and apply it to endogenous AID-initiated S-region DSBs in mouse B cells. We show that CSR is programmed to occur in a productive deletional orientation and does so via an unprecedented mechanism that involves in cis Igh organizational features in combination with frequent S-region DSBs initiated by AID. We further implicate ATM-dependent DSB-response factors in enforcing this mechanism and provide an explanation of why CSR is so reliant on the 53BP1 DSB-response factor.


Nature | 2017

Phosphatidylinositol 3-kinase δ blockade increases genomic instability in B cells

Mara Compagno; Qi Wang; Chiara Pighi; Taek-Chin Cheong; Fei-Long Meng; Teresa Poggio; Leng-Siew Yeap; Elif Karaca; Rafael B. Blasco; Fernanda Langellotto; Chiara Ambrogio; Claudia Voena; Adrian Wiestner; Siddha Kasar; Jennifer R. Brown; Jing Sun; Catherine J. Wu; Monica Gostissa; Frederick W. Alt; Roberto Chiarle

Activation-induced cytidine deaminase (AID) is a B-cell-specific enzyme that targets immunoglobulin genes to initiate class switch recombination and somatic hypermutation. In addition, through off-target activity, AID has a much broader effect on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in the development and progression of lymphoma. AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation. The phosphatidylinositol 3-kinase δ (PI3Kδ) pathway regulates AID by suppressing its expression in B cells. Drugs for leukaemia or lymphoma therapy such as idelalisib, duvelisib and ibrutinib block PI3Kδ activity directly or indirectly, potentially affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. Both of these effects were completely abrogated in AID-deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumours in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IGH and AID off-target sites in human chronic lymphocytic leukaemia and mantle cell lymphoma cell lines, and patients treated with idelalisib, but not ibrutinib, showed increased somatic hypermutation in AID off-targets. In summary, we show that PI3Kδ or Bruton’s tyrosine kinase inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism. This effect should be carefully considered, as such inhibitors can be administered to patients for years.


PLOS Genetics | 2013

Telomerase-Null Survivor Screening Identifies Novel Telomere Recombination Regulators

Yan Feng Hu; Hong-Bo Tang; Ning-Ning Liu; Xia-Jing Tong; Wei Dang; Yi-Min Duan; Xiao-Hong Fu; Yang Zhang; Jing Peng; Fei-Long Meng; Jin-Qiu Zhou

Telomeres are protein–DNA structures found at the ends of linear chromosomes and are crucial for genome integrity. Telomeric DNA length is primarily maintained by the enzyme telomerase. Cells lacking telomerase will undergo senescence when telomeres become critically short. In Saccharomyces cerevisiae, a very small percentage of cells lacking telomerase can remain viable by lengthening telomeres via two distinct homologous recombination pathways. These “survivor” cells are classified as either Type I or Type II, with each class of survivor possessing distinct telomeric DNA structures and genetic requirements. To elucidate the regulatory pathways contributing to survivor generation, we knocked out the telomerase RNA gene TLC1 in 280 telomere-length-maintenance (TLM) gene mutants and examined telomere structures in post-senescent survivors. We uncovered new functional roles for 10 genes that affect the emerging ratio of Type I versus Type II survivors and 22 genes that are required for Type II survivor generation. We further verified that Pif1 helicase was required for Type I recombination and that the INO80 chromatin remodeling complex greatly affected the emerging frequency of Type I survivors. Finally, we found the Rad6-mediated ubiquitination pathway and the KEOPS complex were required for Type II recombination. Our data provide an independent line of evidence supporting the idea that these genes play important roles in telomere dynamics.


The EMBO Journal | 2009

Sua5p a single-stranded telomeric DNA-binding protein facilitates telomere replication

Fei-Long Meng; Yan Hu; Ning Shen; Xia-Jing Tong; Jianyong Wang; Jianping Ding; Jin-Qiu Zhou

In budding yeast Saccharomyces cerevisiae, telomere length maintenance involves a complicated network as more than 280 telomere maintenance genes have been identified in the nonessential gene deletion mutant set. As a supplement, we identified additional 29 telomere maintenance genes, which were previously taken as essential genes. In this study, we report a novel function of Sua5p in telomere replication. Epistasis analysis and telomere sequencing show that sua5Δ cells display progressively shortened telomeres at early passages, and Sua5 functions downstream telomerase recruitment. Further, biochemical, structural and genetic studies show that Sua5p specifically binds single‐stranded telomeric (ssTG) DNA in vitro through a distinct DNA‐binding region on its surface, and the DNA‐binding ability is essential for its telomere function. Thus, Sua5p represents a novel ssTG DNA‐binding protein and positively regulates the telomere length in vivo.


Aging Cell | 2008

Candida albicans , a distinctive fungal model for cellular aging study

Xiao-Hong Fu; Fei-Long Meng; Yan Feng Hu; Jin-Qiu Zhou

The unicellular eukaryotic organisms represent the popular model systems to understand aging in eukaryotes. Candida albicans, a polymorphic fungus, appears to be another distinctive unicellular aging model in addition to the budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe. The two types of Candida cells, yeast (blastospore) form and hyphal (filamentous) form, have similar replicative lifespan. Taking the advantage of morphologic changes, we are able to obtain cells of different ages. Old Candida cells tend to accumulate glycogen and oxidatively damaged proteins. Deletion of the SIR2 gene causes a decrease of lifespan, while insertion of an extra copy of SIR2 extends lifespan, indicating that like in S. cerevisiae, Sir2 regulates cellular aging in C. albicans. Interestingly, Sir2 deletion does not result in the accumulation of extra‐chromosomal rDNA molecules, but influences the retention of oxidized proteins in mother cells, suggesting that the extra‐chromosomal rDNA molecules may not be associated with cellular aging in C. albicans. This novel aging model, which allows efficient large‐scale isolation of old cells, may facilitate biochemical characterizations and genomics/proteomics studies of cellular aging, and help to verify the aging pathways observed in other organisms including S. cerevisiae.


Molecular and Cellular Biology | 2010

SWR1 Complex Poises Heterochromatin Boundaries for Antisilencing Activity Propagation

Bo Zhou; Shan-Shan Wang; Lu-Xia Xu; Fei-Long Meng; Yao-Ji Xuan; Yi-Min Duan; Jianyong Wang; Hao Hu; Xianchi Dong; Jianping Ding; Jin-Qiu Zhou

ABSTRACT In eukaryotes, chromosomal processes are usually modulated through chromatin-modifying complexes that are dynamically targeted to specific regions of chromatin. In this study, we show that the chromatin-remodeling complex SWR1 (SWR1-C) uses a distinct strategy to regulate heterochromatin spreading. Swr1 binds in a stable manner near heterochromatin to prepare specific chromosomal regions for H2A.Z deposition, which can be triggered by NuA4-mediated acetylation of histone H4. We also demonstrate through experiments with Swc4, a module shared by NuA4 and SWR1-C, that the coupled actions of NuA4 and SWR1-C lead to the efficient incorporation of H2A.Z into chromatin and thereby synergize heterochromatin boundary activity. Our results support a model where SWR1-C resides at the heterochromatin boundary to maintain and amplify antisilencing activity of histone H4 acetylation through incorporating H2A.Z into chromatin.


Nucleic Acids Research | 2006

Saccharomyces cerevisiae Est3p dimerizes in vitro and dimerization contributes to efficient telomere replication in vivo

Cui-Ping Yang; Yong-Bin Chen; Fei-Long Meng; Jin-Qiu Zhou

In Saccharomyces cerevisiae at least five genes, EST1, EST2, EST3, TLC1 and CDC13, are required for telomerase activity in vivo. The telomerase catalytic subunit Est2p and telomerase RNA subunit Tlc1 constitute the telomerase core enzyme. Est1p and Est3p are the other subunits of telomerase holoenzyme. In order to dissect the function of Est3p in telomere replication, we over-expressed and purified recombinant wild-type and mutant Est3 proteins. The wild-type protein, as well as the K71A, E104A and T115A mutants were able to dimerize in vitro, while the Est3p-D49A, -K68A or -D166A mutant showed reduced ability to dimerize. Mutations in Est3p that decreased dimerization also appeared to cause telomere shortening in vivo. Double point mutation of Est3p-D49A-K68A and single point mutation of Est3p-K68A showed similar telomere shortening, suggesting that the K68 residue might be more important for telomerase activity. The ectopic co-expression of K71A or T115A mutant with wild-type Est3p using centromere plasmids caused telomere shortening, while co-expression of the D49A, K68A, D86A or F103A mutants with wild-type Est3p had no effect on telomere length regulation. These data suggested that dimerization is important for Est3p function in vivo.


PLOS Genetics | 2009

Telomere Recombination Accelerates Cellular Aging in Saccharomyces cerevisiae

Xiao-Fen Chen; Fei-Long Meng; Jin-Qiu Zhou

Telomeres are nucleoprotein structures located at the linear ends of eukaryotic chromosomes. Telomere integrity is required for cell proliferation and survival. Although the vast majority of eukaryotic species use telomerase as a primary means for telomere maintenance, a few species can use recombination or retrotransposon-mediated maintenance pathways. Since Saccharomyces cerevisiae can use both telomerase and recombination to replicate telomeres, budding yeast provides a useful system with which to examine the evolutionary advantages of telomerase and recombination in preserving an organism or cell under natural selection. In this study, we examined the life span in telomerase-null, post-senescent type II survivors that have employed homologous recombination to replicate their telomeres. Type II recombination survivors stably maintained chromosomal integrity but exhibited a significantly reduced replicative life span. Normal patterns of cell morphology at the end of a replicative life span and aging-dependent sterility were observed in telomerase-null type II survivors, suggesting the type II survivors aged prematurely in a manner that is phenotypically consistent with that of wild-type senescent cells. The shortened life span of type II survivors was extended by calorie restriction or TOR1 deletion, but not by Fob1p inactivation or Sir2p over-expression. Intriguingly, rDNA recombination was decreased in type II survivors, indicating that the premature aging of type II survivors was not caused by an increase in extra-chromosomal rDNA circle accumulation. Reintroduction of telomerase activity immediately restored the replicative life span of type II survivors despite their heterogeneous telomeres. These results suggest that telomere recombination accelerates cellular aging in telomerase-null type II survivors and that telomerase is likely a superior telomere maintenance pathway in sustaining yeast replicative life span.

Collaboration


Dive into the Fei-Long Meng's collaboration.

Top Co-Authors

Avatar

Frederick W. Alt

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Jin-Qiu Zhou

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Xiao-Hong Fu

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Zhou Du

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Monica Gostissa

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiazhi Hu

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Roberto Chiarle

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Yi-Min Duan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge