Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fei Wen Cheong is active.

Publication


Featured researches published by Fei Wen Cheong.


Malaria Journal | 2011

Specific, sensitive and rapid detection of human plasmodium knowlesi infection by loop-mediated isothermal amplification (LAMP) in blood samples

Yee Ling Lau; Mun Yik Fong; Rohela Mahmud; Phooi-Yee Chang; Vanitha Palaeya; Fei Wen Cheong; Lit-Chein Chin; Claudia Nisha Anthony; Abdulsalam M. Al-Mekhlafi; Yeng Chen

BackgroundThe emergence of Plasmodium knowlesi in humans, which is in many cases misdiagnosed by microscopy as Plasmodium malariae due to the morphological similarity has contributed to the needs of detection and differentiation of malaria parasites. At present, nested PCR targeted on Plasmodium ssrRNA genes has been described as the most sensitive and specific method for Plasmodium detection. However, this method is costly and requires trained personnel for its implementation. Loop-mediated isothermal amplification (LAMP), a novel nucleic acid amplification method was developed for the clinical detection of P. knowlesi. The sensitivity and specificity of LAMP was evaluated in comparison to the results obtained via microscopic examination and nested PCR.MethodsLAMP assay was developed based on P. knowlesi genetic material targeting the apical membrane antigen-1 (AMA-1) gene. The method uses six primers that recognize eight regions of the target DNA and it amplifies DNA within an hour under isothermal conditions (65°C) in a water-bath.ResultsLAMP is highly sensitive with the detection limit as low as ten copies for AMA-1. LAMP detected malaria parasites in all confirm cases (n = 13) of P. knowlesi infection (sensitivity, 100%) and none of the negative samples (specificity, 100%) within an hour. LAMP demonstrated higher sensitivity compared to nested PCR by successfully detecting a sample with very low parasitaemia (< 0.01%).ConclusionWith continuous efforts in the optimization of this assay, LAMP may provide a simple and reliable test for detecting P. knowlesi malaria parasites in areas where malaria is prevalent.


Malaria Journal | 2013

Acute respiratory distress syndrome and acute renal failure from Plasmodium ovale infection with fatal outcome

Yee Ling Lau; Wenn-Chyau Lee; Lian Huat Tan; Adeeba Kamarulzaman; Sharifah Faridah Syed Omar; Mun Yik Fong; Fei Wen Cheong; Rohela Mahmud

BackgroundPlasmodium ovale is one of the causative agents of human malaria. Plasmodium ovale infection has long been thought to be non-fatal. Due to its lower morbidity, P. ovale receives little attention in malaria research.MethodsTwo Malaysians went to Nigeria for two weeks. After returning to Malaysia, they fell sick and were admitted to different hospitals. Plasmodium ovale parasites were identified from blood smears of these patients. The species identification was further confirmed with nested PCR. One of them was successfully treated with no incident of relapse within 12-month medical follow-up. The other patient came down with malaria-induced respiratory complication during the course of treatment. Although parasites were cleared off the circulation, the patient’s condition worsened. He succumbed to multiple complications including acute respiratory distress syndrome and acute renal failure.ResultsSequencing of the malaria parasite DNA from both cases, followed by multiple sequence alignment and phylogenetic tree construction suggested that the causative agent for both malaria cases was P. ovale curtisi.DiscussionIn this report, the differences between both cases were discussed, and the potential capability of P. ovale in causing severe complications and death as seen in this case report was highlighted.ConclusionPlasmodium ovale is potentially capable of causing severe complications, if not death. Complete travel and clinical history of malaria patient are vital for successful diagnoses and treatment. Monitoring of respiratory and renal function of malaria patients, regardless of the species of malaria parasites involved is crucial during the course of hospital admission.


American Journal of Tropical Medicine and Hygiene | 2013

Evaluation of Recombinant Plasmodium knowlesi Merozoite Surface Protein-133 for Detection of Human Malaria

Fei Wen Cheong; Yee Ling Lau; Mun Yik Fong; Rohela Mahmud

Plasmodium knowlesi is now known as the fifth Plasmodium species that can cause human malaria. The Plasmodium merozoite surface protein (MSP) has been reported to be potential target for vaccination and diagnosis of malaria. MSP-1(33) has been shown to be immunogenic and its T cell epitopes could mediate cellular immune protection. However, limited studies have focused on P. knowlesi MSP-133. In this study, an approximately 28-kDa recombinant P. knowlesi MSP-1(33) (pkMSP-1(33)) was expressed by using an Escherichia coli system. The purified pkMSP-1(33) reacted with serum samples of patients infected with P. knowlesi (31 of 31, 100%) and non-P. knowlesi malaria (27 of 28, 96.43%) by Western blotting. The pkMSP-1(33) also reacted with P. knowlesi (25 of 31, 80.65%) and non-P. knowlesi malaria sera (20 of 28, 71.43%) in an enzyme-linked immunosorbent assay (ELISA). Most of the non-malarial infection (49 of 52 in by Western blotting and 46 of 52 in the ELISA) and healthy donor serum samples (65 of 65 by Western blotting and ELISA) did not react with recombinant pkMSP-1(33).


Parasites & Vectors | 2016

Seroprevalence of fascioliasis, toxocariasis, strongyloidiasis and cysticercosis in blood samples diagnosed in Medic Medical Center Laboratory, Ho Chi Minh City, Vietnam in 2012

Toan Nguyen; Fei Wen Cheong; Jonathan Wee Kent Liew; Yee Ling Lau

BackgroundDespite the global effort against neglected tropical diseases (NTDs), developing countries with middle to low income are still burdened by them. Vietnam has been undergoing substantial economic growth and urbanization, but underprivileged people living in rural and suburban areas are still having little access to public health infrastructure and proper sanitation. Hitherto, limited information is available for seroprevalence and risk factors of several parasitic diseases in Vietnam.MethodsA retrospective study was performed on diagnostic results of Fasciola spp., Toxocara spp., Strongyloides stercoralis and Taenia solium IgG ELISA tests from Medic Medical Center Laboratory, Ho Chi Minh City in 2012. The data were first stratified before statistical analyses were performed. Seroprevalence of fascioliasis, toxocariasis, strongyloidiasis and cysticercosis was determined and the age and gender risk factors were evaluated.ResultsSeroprevalence of fascioliasis, toxocariasis, strongyloidiasis and cysticercosis was 5.9 % (590/10,084; 95 % CI: 5.44–6.36), 45.2 % (34,995/77,356; 95 % CI: 44.85–45.55), 7.4 % (3,174/42,920; 95 % CI: 7.15–7.65) and 4.9 % (713/14,601; 95 % CI: 4.55–5.25), respectively. Co-exposure to multiple parasites was detected in 890 males (45.7 %; 95 % CI: 43.49–47.91) and 1,059 females (54.3 %; 95 % CI: 52.09–56.51). Social structure and differences in behavioural factors caused the gender factor to have a significant effect on the prevalence of all the diseases, while the seropositivity for fascioliasis and strongyloidiasis were age group-related.ConclusionsThe seroprevalence of fascioliasis, toxocariasis, strongyloidiasis and cysticercosis in the blood samples diagnosed in Medic Medical Center Laboratory, Ho Chi Minh City, in year 2012 were comparatively high. The Vietnamese customs and cultures, dietary habits and agricultural practices exposed them to high risk of contracting NTDs. Despite the possibility of false positive results due to antigenic cross-reactions, detection of IgG antibodies remains as a reliable method in sero-epidemiological study as it is non-invasive and demonstrates previous exposure of individuals to the parasites. Besides the implementation of strategies to control these diseases, epidemiological analysis and surveillance of diseases should also be continually strengthened to monitor the effectiveness of regimens and interventions.


Acta Tropica | 2016

Identification and characterization of epitopes on Plasmodium knowlesi merozoite surface protein- 142(MSP-142) using synthetic peptide library and phage display library

Fei Wen Cheong; Mun Yik Fong; Yee Ling Lau

Plasmodium knowlesi can cause potentially life threatening human malaria. The Plasmodium merozoite surface protein-142 (MSP-142) is a potential target for malaria blood stage vaccine, and for diagnosis of malaria. Two epitope mapping techniques were used to identify the potential epitopes within P. knowlesi MSP-142. Nine and 14 potential epitopes were identified using overlapping synthetic peptide library and phage display library, respectively. Two regions on P. knowlesi MSP-142 (amino acid residues 37-95 and residues 240-289) were identified to be the potential dominant epitope regions. Two of the prominent epitopes, P10 (TAKDGMEYYNKMGELYKQ) and P31 (RCLLGFKEVGGKCVPASI), were evaluated using mouse model. P10- and P31-immunized mouse sera reacted with recombinant P. knowlesi MSP-142, with the IgG isotype distribution of IgG2b>IgG1>IgG2a>IgG3. Significant higher level of cytokines interferon-gamma and interleukin-2 was detected in P31-immunized mice. Both P10 and P31 could be the suitable epitope candidates to be used in malaria vaccine designs and immunodiagnostic assays, provided further evaluation is needed to validate the potential uses of these epitopes.


Experimental Parasitology | 2015

Detection of human malaria using recombinant Plasmodium knowlesi merozoire surface protein-1 (MSP-119) expressed in Escherichia coli

Parthasarathy Sonaimuthu; Fei Wen Cheong; Lit Chein Chin; Rohela Mahmud; Mun Yik Fong; Yee Ling Lau

Malaria remains one of the worlds most important infectious diseases and is responsible for enormous mortality and morbidity. Human infection with Plasmodium knowlesi is widely distributed in Southeast Asia. Merozoite surface protein-1₁₉ (MSP-1₁₉), which plays an important role in protective immunity against asexual blood stage malaria parasites, appears as a leading immunogenic antigen of Plasmodium sp. We evaluated the sensitivity and specificity of recombinant P. knowlesi MSP-1₁₉ (rMSP-1₁₉) for detection of malarial infection. rMSP-1₁₉ was expressed in Escherichia coli expression system and the purified rMSP-1₁₉ was evaluated with malaria, non-malaria and healthy human serum samples (n = 215) in immunoblots. The sensitivity of rMSP-1₁₉ for detection of P. knowlesi, Plasmodium falciparum, Plasmodium  vivax and Plasmodium  ovale infection was 95.5%, 75.0%, 85.7% and 100%, respectively. rMSP-1₁₉ did not react with all the non-malaria and healthy donor sera, which represents 100% specificity. The rMSP-1₁₉ could be used as a potential antigen in serodiagnosis of malarial infection in humans.


Parasitology | 2013

Comparative analysis of ITS1 nucleotide sequence reveals distinct genetic difference between Brugia Malayi from Northeast Borneo and Thailand

Mun Yik Fong; Rahmah Noordin; Yee Ling Lau; Fei Wen Cheong; Muhammad Hafiznur Yunus; Zulkarnain Md Idris

Brugia malayi is one of the parasitic worms which causes lymphatic filariasis in humans. Its geographical distribution includes a large part of Asia. Despite its wide distribution, very little is known about the genetic variation and molecular epidemiology of this species. In this study, the internal transcribed spacer 1 (ITS1) nucleotide sequences of B. malayi from microfilaria-positive human blood samples in Northeast Borneo Island were determined, and compared with published ITS1 sequences of B. malayi isolated from cats and humans in Thailand. Multiple alignment analysis revealed that B. malayi ITS1 sequences from Northeast Borneo were more similar to each other than to those from Thailand. Phylogenetic trees inferred using Neighbour-Joining and Maximum Parsimony methods showed similar topology, with 2 distinct B. malayi clusters. The first cluster consisted of Northeast Borneo B. malayi isolates, whereas the second consisted of the Thailand isolates. The findings of this study suggest that B. malayi in Borneo Island has diverged significantly from those of mainland Asia, and this has implications for the diagnosis of B. malayi infection across the region using ITS1-based molecular techniques.


Parasites & Vectors | 2018

Diagnostic tools in childhood malaria

Amirah Amir; Fei Wen Cheong; Jeremy Ryan De Silva; Yee Ling Lau

Every year, millions of people are burdened with malaria. An estimated 429,000 casualties were reported in 2015, with the majority made up of children under five years old. Early and accurate diagnosis of malaria is of paramount importance to ensure appropriate administration of treatment. This minimizes the risk of parasite resistance development, reduces drug wastage and unnecessary adverse reaction to antimalarial drugs. Malaria diagnostic tools have expanded beyond the conventional microscopic examination of Giemsa-stained blood films. Contemporary and innovative techniques have emerged, mainly the rapid diagnostic tests (RDT) and other molecular diagnostic methods such as PCR, qPCR and loop-mediated isothermal amplification (LAMP). Even microscopic diagnosis has gone through a paradigm shift with the development of new techniques such as the quantitative buffy coat (QBC) method and the Partec rapid malaria test. This review explores the different diagnostic tools available for childhood malaria, each with their characteristic strengths and limitations. These tools play an important role in making an accurate malaria diagnosis to ensure that the use of anti-malaria are rationalized and that presumptive diagnosis would only be a thing of the past.


Parasites & Vectors | 2018

Erythrocyte-binding assays reveal higher binding of Plasmodium knowlesi Duffy binding protein to human Fya+/b+ erythrocytes than to Fya+/b- erythrocytes

Mun Yik Fong; Fei Wen Cheong; Yee Ling Lau

BackgroundThe merozoite of the zoonotic Plasmodium knowlesi invades human erythrocytes via the binding of its Duffy binding protein (PkDBPαII) to the Duffy antigen on the eythrocytes. The Duffy antigen has two immunologically distinct forms, Fya and Fyb. In this study, the erythrocyte-binding assay was used to quantitatively determine and compare the binding level of PkDBPαII to Fya+/b+ and Fya+/b- human erythrocytes.ResultsIn the erythrocyte-binding assay, binding level was determined by scoring the number of rosettes that were formed by erythrocytes surrounding transfected mammalian COS-7 cells which expressed PkDBPαII. The assay result revealed a significant difference in the binding level. The number of rosettes scored for Fya+/b+ was 1.64-fold higher than that of Fya+/b- (155.50 ± 34.32 and 94.75 ± 23.16 rosettes, respectively; t(6) = -2.935, P = 0.026).ConclusionsThe erythrocyte-binding assay provided a simple approach to quantitatively determine the binding level of PkDBPαII to the erythrocyte Duffy antigen. Using this assay, PkDBPαII was found to display higher binding to Fya+/b+ erythrocytes than to Fya+/b- erythrocytes.


Infection and Drug Resistance | 2018

Plasmodium knowlesi malaria: current research perspectives

Amirah Amir; Fei Wen Cheong; Jeremy Ryan De Silva; Jonathan Wee Kent Liew; Yee Ling Lau

Originally known to cause simian malaria, Plasmodium knowlesi is now known as the fifth human malaria species. Since the publishing of a report that largely focused on human knowlesi cases in Sarawak in 2004, many more human cases have been reported in nearly all of the countries in Southeast Asia and in travelers returning from these countries. The zoonotic nature of this infection hinders malaria elimination efforts. In order to grasp the current perspective of knowlesi malaria, this literature review explores the different aspects of the disease including risk factors, diagnosis, treatment, and molecular and functional studies. Current studies do not provide sufficient data for an effective control program. Therefore, future direction for knowlesi research is highlighted here with a final aim of controlling, if not eliminating, the parasite.

Collaboration


Dive into the Fei Wen Cheong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge