Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Feijiang Li is active.

Publication


Featured researches published by Feijiang Li.


Journal of Bone and Mineral Research | 2014

Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats.

Da Jing; Jing Cai; Yan Wu; Guanghao Shen; Feijiang Li; Qiaoling Xu; Kangning Xie; Chi Tang; Juan Liu; Wei Guo; Xiaoming Wu; Maogang Jiang; Erping Luo

A large body of evidence indicates that pulsed electromagnetic fields (PEMF), as a safe and noninvasive method, could promote in vivo and in vitro osteogenesis. Thus far, the effects and underlying mechanisms of PEMF on disuse osteopenia and/or osteoporosis remain poorly understood. Herein, the efficiency of PEMF on osteoporotic bone microarchitecture, bone strength, and bone metabolism, together with its associated signaling pathway mechanism, was systematically investigated in hindlimb‐unloaded (HU) rats. Thirty young mature (3‐month‐old), male Sprague‐Dawley rats were equally assigned to control, HU, and HU + PEMF groups. The HU + PEMF group was subjected to daily 2‐hour PEMF exposure at 15 Hz, 2.4 mT. After 4 weeks, micro–computed tomography (µCT) results showed that PEMF ameliorated the deterioration of trabecular and cortical bone microarchitecture. Three‐point bending test showed that PEMF mitigated HU‐induced reduction in femoral mechanical properties, including maximum load, stiffness, and elastic modulus. Moreover, PEMF increased serum bone formation markers, including osteocalcin (OC) and N‐terminal propeptide of type 1 procollagen (P1NP); nevertheless, PEMF exerted minor inhibitory effects on bone resorption markers, including C‐terminal crosslinked telopeptides of type I collagen (CTX‐I) and tartrate‐resistant acid phosphatase 5b (TRAcP5b). Bone histomorphometric analysis demonstrated that PEMF increased mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone, but PEMF caused no obvious changes on osteoclast numbers. Real‐time PCR showed that PEMF promoted tibial gene expressions of Wnt1, LRP5, β‐catenin, OPG, and OC, but did not alter RANKL, RANK, or Sost mRNA levels. Moreover, the inhibitory effects of PEMF on disuse‐induced osteopenia were further confirmed in 8‐month‐old mature adult HU rats. Together, these results demonstrate that PEMF alleviated disuse‐induced bone loss by promoting skeletal anabolic activities, and imply that PEMF might become a potential biophysical treatment modality for disuse osteoporosis.


Acta Biomaterialia | 2014

The effects of pulsed electromagnetic field on the functions of osteoblasts on implant surfaces with different topographies

Jing Wang; Yanxin An; Feijiang Li; Dongmei Li; Da Jing; Tianwen Guo; Erping Luo; Chufan Ma

The use of pulsed electromagnetic fields (PEMFs) is a promising approach to promote osteogenesis. However, few studies have reported the effects of this technique on the osseointegration of endosseous implants, especially with regard to different implant topographies. We focused on how the initial interaction between cells and the titanium surface is enhanced by a PEMF and the possible regulatory mechanisms in this study. Rat osteoblasts were cultured on three types of titanium surfaces (Flat, Micro and Nano) under PEMF stimulation or control conditions. Protein adsorption was significantly increased by the PEMF. The number of osteoblasts attached to the surfaces in the PEMF group was substantially greater than that in the control group after 1.5h incubation. PEMF stimulation oriented the osteoblasts perpendicular to the electromagnetic field lines and increased the number of microfilaments and pseudopodia formed by the osteoblasts. The cell proliferation on the implant surfaces was significantly promoted by the PEMF. Significantly increased extracellular matrix mineralization nodules were observed under PEMF stimulation. The expression of osteogenesis-related genes, including BMP-2, OCN, Col-1,ALP, Runx2 and OSX, were up-regulated on all the surfaces by PEMF stimulation. Our findings suggest that PEMFs enhance the osteoblast compatibility on titanium surfaces but to different extents with regard to implant surface topographies. The use of PEMFs might be a potential adjuvant treatment for improving the osseointegration process.


PLOS ONE | 2013

Pulsed Electromagnetic Fields Improve Bone Microstructure and Strength in Ovariectomized Rats through a Wnt/Lrp5/β-Catenin Signaling-Associated Mechanism

Da Jing; Feijiang Li; Maogang Jiang; Jing Cai; Yan Wu; Kangning Xie; Xiaoming Wu; Chi Tang; Juan Liu; Wei Guo; Guanghao Shen; Erping Luo

Growing evidence has demonstrated that pulsed electromagnetic field (PEMF), as an alternative noninvasive method, could promote remarkable in vivo and in vitro osteogenesis. However, the exact mechanism of PEMF on osteopenia/osteoporosis is still poorly understood, which further limits the extensive clinical application of PEMF. In the present study, the efficiency of PEMF on osteoporotic bone microarchitecture and bone quality together with its associated signaling pathway mechanisms was systematically investigated in ovariectomized (OVX) rats. Thirty rats were equally assigned to the Control, OVX and OVX+PEMF groups. The OVX+PEMF group was subjected to daily 8-hour PEMF exposure with 15 Hz, 2.4 mT (peak value). After 10 weeks, the OVX+PEMF group exhibited significantly improved bone mass and bone architecture, evidenced by increased BMD, Tb.N, Tb.Th and BV/TV, and suppressed Tb.Sp and SMI levels in the MicroCT analysis. Three-point bending test suggests that PEMF attenuated the biomechanical strength deterioration of the OVX rat femora, evidenced by increased maximum load and elastic modulus. RT-PCR analysis demonstrated that PEMF exposure significantly promoted the overall gene expressions of Wnt1, LRP5 and β-catenin in the canonical Wnt signaling, but did not exhibit obvious impact on either RANKL or RANK gene expressions. Together, our present findings highlight that PEMF attenuated OVX-induced deterioration of bone microarchitecture and strength in rats by promoting the activation of Wnt/LRP5/β-catenin signaling rather than by inhibiting RANKL-RANK signaling. This study enriches our basic knowledge to the osteogenetic activity of PEMF, and may lead to more efficient and scientific clinical application of PEMF in inhibiting osteopenia/osteoporosis.


Bioelectromagnetics | 2010

Effects of 180 mT static magnetic fields on diabetic wound healing in rats.

Da Jing; Guanghao Shen; Jing Cai; Feijiang Li; Jinghui Huang; Yuqing Wang; Qiaoling Xu; Chi Tang; Erping Luo

Diabetic wound (DW) problems are becoming a formidable clinical challenge due to the sharp increase in the diabetic population and the high incidence of DW. Static magnetic field (SMF) therapy, an inexpensive and accessible noninvasive method, has been proven to be effective on various tissue repairs. However, the issue of the therapeutic effect of SMF on DW healing has never been investigated. The objective of this study was to systematically evaluate the effect of a 180 mT moderate-intensity gradient SMF on DW healing in streptozotocin-induced diabetic rats. Forty-eight 3-month-old male Sprague-Dawley rats (32 diabetic and 16 non-diabetic rats) were assigned to three equal groups: normal wound, DW, and DW + SMF groups. An open circular wound with 1.5 cm diameter was created in the dorsum. The wound was covered with a dressing and the magnet was fixed on top of the dressing. On days 5, 12, and 19, four rats of each group were euthanized and gross wound area, histology and tensile strength were evaluated. The wound area determination suggested that SMF significantly increased the healing rate and reduced the gross healing time. This result was further confirmed by histological observations. The wound tensile strength, reflecting the amount and quality of collagen deposition, increased to a larger extent in the DW + SMF group on days 12 and 19 compared with the DW group. The results indicated that 180 mT SMF presented a beneficial effect on DW healing, and implied the clinical potential of SMF therapy in accelerating DW repair and releasing the psychological and physical burdens of diabetic patients.


PLOS ONE | 2013

Therapeutic effects of 15 Hz pulsed electromagnetic field on diabetic peripheral neuropathy in streptozotocin-treated rats.

Tao Lei; Da Jing; Kangning Xie; Maogang Jiang; Feijiang Li; Jing Cai; Xiaoming Wu; Chi Tang; Qiaoling Xu; Juan Liu; Wei Guo; Guanghao Shen; Erping Luo

Although numerous clinical studies have reported that pulsed electromagnetic fields (PEMF) have a neuroprotective role in patients with diabetic peripheral neuropathy (DPN), the application of PEMF for clinic is still controversial. The present study was designed to investigate whether PEMF has therapeutic potential in relieving peripheral neuropathic symptoms in streptozotocin (STZ)-induced diabetic rats. Adult male Sprague–Dawley rats were randomly divided into three weight-matched groups (eight in each group): the non-diabetic control group (Control), diabetes mellitus with 15 Hz PEMF exposure group (DM+PEMF) which were subjected to daily 8-h PEMF exposure for 7 weeks and diabetes mellitus with sham PEMF exposure group (DM). Signs and symptoms of DPN in STZ-treated rats were investigated by using behavioral assays. Meanwhile, ultrastructural examination and immunohistochemical study for vascular endothelial growth factor (VEGF) of sciatic nerve were also performed. During a 7-week experimental observation, we found that PEMF stimulation did not alter hyperglycemia and weight loss in STZ-treated rats with DPN. However, PEMF stimulation attenuated the development of the abnormalities observed in STZ-treated rats with DPN, which were demonstrated by increased hind paw withdrawal threshold to mechanical and thermal stimuli, slighter demyelination and axon enlargement and less VEGF immunostaining of sciatic nerve compared to those of the DM group. The current study demonstrates that treatment with PEMF might prevent the development of abnormalities observed in animal models for DPN. It is suggested that PEMF might have direct corrective effects on injured nerves and would be a potentially promising non-invasive therapeutic tool for the treatment of DPN.


Bone | 2018

Pulsed electromagnetic fields (PEMF) attenuate changes in vertebral bone mass, architecture and strength in ovariectomized mice

Tao Lei; Zhuowen Liang; Feijiang Li; Chi Tang; Kangning Xie; Pan Wang; Xu Dong; Shuai Shan; Maogang Jiang; Qiaoling Xu; Erping Luo; Guanghao Shen

Pulsed electromagnetic fields (PEMF) has been investigated as a noninvasive alternative method to prevent bone loss for postmenopausal osteoporosis (OP), and the bone tissue involved in these studies are usually long bones such as femur and tibia in OP patients or rat models. However, few studies have investigated the effects of PEMF on the vertebral bone in mice with OP. This study aimed to investigate whether PEMF preserve lumbar vertebral bone mass, microarchitecture and strength in ovariectomized (OVX) mouse model of OP and its associated mechanisms. Thirty 3-month-old female BALB/c mice were randomly divided into three groups (n=10): sham-operated control (Sham), ovariectomy (OVX), and ovariectomy with PEMF treatment (OVX+PEMF). The OVX+PEMF group was exposed to 15Hz, 1.6 mT PEMF for 8h/day, 7days/week. After 8weeks, the mice were sacrificed. The OVX+PEMF group showed lower body weight gain of mice induced by estrogen deficiency compared with OVX group. Biochemical analysis of serum demonstrated that serum bone formation markers including bone specific alkaline phosphatase (BALP), serum osteocalcin (OCN), osteoprotegerin (OPG) and N-terminal propeptide of type I procollagen (P1NP) were markedly higher in OVX+PEMF group compared with OVX group. Besides, serum bone resorption markers including tartrate-resistant acid phosphatase 5b (TRAP-5b) and C-terminal crosslinked telopeptides of type I collagen (CTX-I) were markedly lower in OVX+PEMF group compared with OVX group. Biomechanical test observed that OVX+PEMF group showed higher compressive maximum load and stiffness of the lumbar vertebrae compared with OVX group. Micro-computed tomography (μCT) and histological analysis of lumbar vertebrae revealed that PEMF partially prevented OVX-induced decrease of trabecular bone mass and deterioration of trabecular bone microarchitecture in lumbar vertebrae. Real-time PCR showed that the canonical Wnt signaling pathway of the lumbar vertebrae, including Wnt3a, LRP5 and β-catenin were markedly up-regulated in OVX+PEMF group compared with OVX group. Moreover, the mRNA expressions of RANKL and OPG were markedly up-regulated in OVX+PEMF group compared with OVX group, whereas no statistical difference in RANKL/OPG mRNA ratio was found between OVX+PEMF group and OVX group. Besides, our study also found that the RANK mRNA expression was down-regulated in OVX+PEMF group compared with OVX group. Taken together, we reported that long-term stimulation with PEMF treatment was able to alleviate lumbar vertebral OP in postmenopausal mice through a combination of increased bone formation and suppressed bone resorption related to regulating the skeletal gene expressions of Wnt3a/LRP5/β-catenin and OPG/RANKL/RANK signaling pathways.


BMJ Open | 2015

Intravenous thrombolysis guided by a telemedicine consultation system for acute ischaemic stroke patients in China: the protocol of a multicentre historically controlled study.

Ziwen Yuan; Bo Wang; Feijiang Li; Jing Wang; Jin Zhi; Erping Luo; Zhirong Liu; Gang Zhao

Introduction The rate of intravenous thrombolysis with tissue-type plasminogen activator or urokinase for stroke patients is extremely low in China. It has been demonstrated that a telestroke service may help to increase the rate of intravenous thrombolysis and improve stroke care quality in local hospitals. The aim of this study, also called the Acute Stroke Advancing Program, is to evaluate the effectiveness and safety of decision-making concerning intravenous thrombolysis via a telemedicine consultation system for acute ischaemic stroke patients in China. Methods and analysis This is a multicentre historically controlled study with a planned enrolment of 300 participants in each of two groups. The telestroke network consists of one hub hospital and 14 spoke hospitals in underserved regions of China. The usual stroke care quality in the spoke hospitals without guidance from the hub hospital will be used as the historical control. The telemedicine consultation system is an interactive, two-way, wireless, audiovisual system accessed on portable devices. The primary outcome is the percentage of patients treated with intravenous thrombolysis within 4.5 h of stroke onset. Ethics and dissemination The project has been approved by the Institutional Review Board of Xijing Hospital. The results will be published in scientific journals and presented to local government and relevant institutes. Trial registration number NCT02088346 (12 March 2014).


Scientific Reports | 2017

Effects of four kinds of electromagnetic fields (EMF) with different frequency spectrum bands on ovariectomized osteoporosis in mice

Tao Lei; Feijiang Li; Zhuowen Liang; Chi Tang; Kangning Xie; Pan Wang; Xu Dong; Shuai Shan; Juan Liu; Qiaoling Xu; Erping Luo; Guanghao Shen

Electromagnetic fields (EMF) was considered as a non-invasive modality for treatment of osteoporosis while the effects were diverse with EMF parameters in time domain. In present study, we extended analysis of EMF characteristics from time domain to frequency domain, aiming to investigate effects of four kinds of EMF (LP (1–100 Hz), BP (100–3,000 Hz), HP (3,000–50,000 Hz) and AP (1–50,000 Hz)) on ovariectomized (OVX) osteoporosis (OP) in mice. Forty-eight 3-month-old female BALB/c mice were equally assigned to Sham, OVX, OVX + LP, OVX + BP, OVX + HP and OVX + AP groups (n = 8). After 8-week exposure (3 h/day), LP and BP significantly increased serum bone formation markers and osteogenesis-related gene expressions compared with OVX. Bedsides, LP and BP also slightly increased bone resorption activity compared with OVX, evidenced by increased RANKL/OPG ratio. HP sharply decreased serum bone formation and resporption markers and osteogenesis and osteoclastogenesis related gene expressions compared with OVX. AP had accumulative effects of LP, BP and HP, which significantly increased bone formation and decreased bone resporption activity compared with OVX. As a result, LP, BP and HP exposure did not later deterioration of bone mass, microarchitecture and mechanical strength in OVX mice with OP. However, AP stimulation attenuated OVX-induced bone loss.


biomedical engineering | 2013

Application of Wavelet Transform to Analysis of Human Skin Blood Flux Signal

Tao Lei; Maogang Jiang; Yue Tian; Kangning Xie; Feijiang Li; Da Jing; Yili Yan; Guanghao Shen; Erping Luo

The traditional parameters to evaluate human microcirculation such as mean values of skin blood flux (SBF) and velocity of skin blood flow measured by laser Doppler flowmetry (LDF) failed to find the biological effects of magnetic field (MF) on human microcirculation according to numerous researches. Although this inefficacy of MF indicated by these traditional parameters, other potential parameters were seldom investigated. Therefore, this study aimed to find other potential parameters by using time-frequency analysis as indicators to investigate whether MF affects human microcirculation in future studies. Continuous wavelet transform which has superior frequency resolution in low frequency band was applied in present study to convert two dimensional data of flux signal with low frequency band into three dimensional data involving the temporal and frequency information of the original signal. Six characteristic peaks identified relating to microvascular mechanism were recognized in the frequency interval between 0.005 and 2 Hz and the amplitude of each peak varied with time. This method may provide a new idea and method for the analysis and processing human SBF signal and lay a foundation for future study of MF effects on human microcirculation. However, more studies are needed to demonstrate the interesting and encouraging effects of MF on untraditional parameters such as wavelet coefficients of SBF signal and to explain the precise action mechanism of MF on human microcirculation.


Osteoporosis International | 2011

The preventive effects of pulsed electromagnetic fields on diabetic bone loss in streptozotocin-treated rats

Da Jing; Jing Cai; Guanghao Shen; Jinghui Huang; Feijiang Li; J. Li; Lihua Lu; Erping Luo; Qiaoling Xu

Collaboration


Dive into the Feijiang Li's collaboration.

Top Co-Authors

Avatar

Erping Luo

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Guanghao Shen

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Chi Tang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Da Jing

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Kangning Xie

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Maogang Jiang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Qiaoling Xu

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jing Cai

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Juan Liu

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Tao Lei

Fourth Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge