Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Feini Qu is active.

Publication


Featured researches published by Feini Qu.


Acta Biomaterialia | 2013

Biomaterial-mediated delivery of degradative enzymes to improve meniscus integration and repair.

Feini Qu; Jung-Ming G. Lin; John L. Esterhai; Matthew B. Fisher; Robert L. Mauck

Endogenous repair of fibrous connective tissues is limited, and there exist few successful strategies to improve healing after injury. As such, new methods that advance repair by promoting cell growth, extracellular matrix (ECM) production, and tissue integration would represent a marked clinical advance. Using the meniscus as a test platform, we sought to develop an enzyme-releasing scaffold that enhances integrative repair. We hypothesized that the high ECM density and low cellularity of native tissue present physical and biological barriers to endogenous healing, and that localized collagenase treatment might expedite cell migration to the wound edge and tissue remodeling. To test this hypothesis, we fabricated a delivery system in which collagenase was stored inside electrospun poly(ethylene oxide) (PEO) nanofibers and released upon hydration. In vitro results showed that partial digestion of the wound interface improved repair by creating a microenvironment that facilitated cell migration, proliferation and matrix deposition. Specifically, treatment with high-dose collagenase led to a 2-fold increase in cell density at the wound margin and a 2-fold increase in integrative tissue compared to untreated controls at 4 weeks (P≤0.05). Furthermore, when composite scaffolds containing both collagenase-releasing and structural fiber fractions were placed inside meniscal tears in vitro, enzyme release acted locally and resulted in a positive cellular response similar to that of global treatment with aqueous collagenase. This innovative approach to targeted enzyme delivery may aid the many patients that exhibit meniscal tears by promoting integration of the defect, thereby circumventing the pathologic consequences of partial meniscus removal, and may find widespread application in the treatment of injuries to a variety of dense connective tissues.


Acta Biomaterialia | 2017

Micromechanical anisotropy and heterogeneity of the meniscus extracellular matrix

Qing Li; Feini Qu; Biao Han; Chao Wang; Hao Li; Robert L. Mauck; Lin Han

To understand how the complex biomechanical functions of the meniscus are endowed by the nanostructure of its extracellular matrix (ECM), we studied the anisotropy and heterogeneity in the micromechanical properties of the meniscus ECM. We used atomic force microscopy (AFM) to quantify the time-dependent mechanical properties of juvenile bovine meniscus at deformation length scales corresponding to the diameters of collagen fibrils. At this scale, anisotropy in the elastic modulus of the circumferential fibers, the major ECM structural unit, can be attributed to differences in fibril deformation modes: uncrimping when normal to the fiber axis, and laterally constrained compression when parallel to the fiber axis. Heterogeneity among different structural units is mainly associated with their variations in microscale fiber orientation, while heterogeneity across anatomical zones is due to alterations in collagen fibril diameter and alignment at the nanoscale. Unlike the elastic modulus, the time-dependent properties are more homogeneous and isotropic throughout the ECM. These results enable a detailed understanding of the meniscus structure-mechanics at the nanoscale, and can serve as a benchmark for understanding meniscus biomechanical functions, documenting disease progression and designing tissue repair strategies. STATEMENT OF SIGNIFICANCE Meniscal damage is a common cause of joint injury, which can lead to the development of post-traumatic osteoarthritis among young adults. Restoration of meniscus function requires repairing its highly heterogeneous and complex extracellular matrix. Employing AFM, this study quantifies the anisotropic and heterogeneous features of the meniscus ECM structure and mechanics. The micromechanical properties are interpreted within the context of the collagen fibril nanostructure and its variation with tissue anatomical locations. These results provide a fundamental structure-mechanics knowledge benchmark, against which, repair and regeneration strategies can be developed and evaluated with respect to the specialized structural and functional complexity of the native tissue.


Acta Biomaterialia | 2017

Mechanical function near defects in an aligned nanofiber composite is preserved by inclusion of disorganized layers: Insight into meniscus structure and function

Sonia Bansal; Sai Mandalapu; Céline Aeppli; Feini Qu; Spencer E. Szczesny; Robert L. Mauck; Miltiadis H. Zgonis

The meniscus is comprised of circumferentially aligned fibers that resist the tensile forces within the meniscus (i.e., hoop stress) that develop during loading of the knee. Although these circumferential fibers are severed by radial meniscal tears, tibial contact stresses do not increase until the tear reaches ∼90% of the meniscus width, suggesting that the severed circumferential fibers still bear load and maintain the mechanical functionality of the meniscus. Recent data demonstrates that the interfibrillar matrix can transfer strain energy to disconnected fibrils in tendon fascicles. In the meniscus, interdigitating radial tie fibers, which function to stabilize and bind the circumferential fibers together, are hypothesized to function in a similar manner by transmitting load to severed circumferential fibers near a radial tear. To test this hypothesis, we developed an engineered fibrous analog of the knee meniscus using poly(ε-caprolactone) to create aligned scaffolds with variable amounts of non-aligned elements embedded within the scaffold. We show that the tensile properties of these scaffolds are a function of the ratio of aligned to non-aligned elements, and change in a predictable fashion following a simple mixture model. When measuring the loss of mechanical function in scaffolds with a radial tear, compared to intact scaffolds, the decrease in apparent linear modulus was reduced in scaffolds containing non-aligned layers compared to purely aligned scaffolds. Increased strains in areas adjacent to the defect were also noted in composite scaffolds. These findings indicate that non-aligned (disorganized) elements interspersed within an aligned network can improve overall mechanical function by promoting strain transfer to nearby disconnected fibers. This finding supports the notion that radial tie fibers may similarly promote tear tolerance in the knee meniscus, and will direct changes in clinical practice and provide guidance for tissue engineering strategies. STATEMENT OF SIGNIFICANCE The meniscus is a complex fibrous tissue, whose architecture includes radial tie fibers that run perpendicular to and interdigitate with the predominant circumferential fibers. We hypothesized that these radial elements function to preserve mechanical function in the context of interruption of circumferential bundles, as would be the case in a meniscal tear. To test this hypothesis, we developed a biomaterial analog containing disorganized layers enmeshed regularly throughout an otherwise aligned network. Using this material formulation, we showed that strain transmission is improved in the vicinity of defects when disorganized fiber layers were present. This supports the idea that radial elements within the meniscus improve function near a tear, and will guide future clinical interventions and the development of engineered replacements.


Nature Communications | 2017

Programmed biomolecule delivery to enable and direct cell migration for connective tissue repair

Feini Qu; Julianne L. Holloway; John L. Esterhai; Jason A. Burdick; Robert L. Mauck

Dense connective tissue injuries have limited repair, due to the paucity of cells at the wound site. We hypothesize that decreasing the density of the local extracellular matrix (ECM) in conjunction with releasing chemoattractive signals increases cellularity and tissue formation after injury. Using the knee meniscus as a model system, we query interstitial cell migration in the context of migratory barriers using a novel tissue Boyden chamber and show that a gradient of platelet-derived growth factor-AB (PDGF-AB) expedites migration through native tissue. To implement these signals in situ, we develop nanofibrous scaffolds with distinct fiber fractions that sequentially release active collagenase (to increase ECM porosity) and PDGF-AB (to attract endogenous cells) in a localized and coordinated manner. We show that, when placed into a meniscal defect, the controlled release of collagenase and PDGF-AB increases cellularity at the interface and within the scaffold, as well as integration with the surrounding tissue.Dense connective tissues do not easily heal, in part due to a low supply of reparative cells. Here, the authors develop a fibrous scaffold for meniscal repair that sequentially releases collagenase and a growth factor at the injury site, breaking down the extracellular matrix and recruiting endogenous cells.


Scientific Reports | 2018

Maturation State and Matrix Microstructure Regulate Interstitial Cell Migration in Dense Connective Tissues

Feini Qu; Qing Li; Xiao Wang; Xuan Cao; Miltiadis H. Zgonis; John L. Esterhai; Vivek B. Shenoy; Lin Han; Robert L. Mauck

Few regenerative approaches exist for the treatment of injuries to adult dense connective tissues. Compared to fetal tissues, adult connective tissues are hypocellular and show limited healing after injury. We hypothesized that robust repair can occur in fetal tissues with an immature extracellular matrix (ECM) that is conducive to cell migration, and that this process fails in adults due to the biophysical barriers imposed by the mature ECM. Using the knee meniscus as a platform, we evaluated the evolving micromechanics and microstructure of fetal and adult tissues, and interrogated the interstitial migratory capacity of adult meniscal cells through fetal and adult tissue microenvironments with or without partial enzymatic digestion. To integrate our findings, a computational model was implemented to determine how changing biophysical parameters impact cell migration through these dense networks. Our results show that the micromechanics and microstructure of the adult meniscus ECM sterically hinder cell mobility, and that modulation of these ECM attributes via an exogenous matrix-degrading enzyme permits migration through this otherwise impenetrable network. By addressing the inherent limitations to repair imposed by the mature ECM, these studies may define new clinical strategies to promote repair of damaged dense connective tissues in adults.


Annals of Biomedical Engineering | 2017

Electrospun PLGA Nanofiber Scaffolds Release Ibuprofen Faster and Degrade Slower After In Vivo Implantation

Corinne N. Riggin; Feini Qu; Dong Hwa Kim; Julianne Huegel; David R. Steinberg; Andrew F. Kuntz; Louis J. Soslowsky; Robert L. Mauck; Joseph Bernstein

While delayed delivery of non-steroidal anti-inflammatory drugs (NSAIDs) has been associated with improved tendon healing, early delivery has been associated with impaired healing. Therefore, NSAID use is appropriate only if the dose, timing, and mode of delivery relieves pain but does not impede tissue repair. Because delivery parameters can be controlled using drug-eluting nanofibrous scaffolds, our objective was to develop a scaffold for local controlled release of ibuprofen (IBP), and characterize the release profile and degradation both in vitro and in vivo. We found that when incubated in vitro in saline, scaffolds containing IBP had a linear release profile. However, when implanted subcutaneously in vivo or when incubated in vitro in serum, scaffolds showed a rapid burst release. These data demonstrate that scaffold properties are dependent on the environment in which they are placed and the importance of using serum, rather than saline, for initial in vitro evaluation of biofactor release from biodegradable scaffolds.


bioRxiv | 2018

Measuring Clinically Relevant Knee Motions With A Self-Calibrated Wearable Sensor

Todd J. Hullfish; Feini Qu; Brendan D. Stoeckl; Peter Gebhard; Robert L. Mauck; Josh R. Baxter

Low-cost sensors provide a unique opportunity to continuously monitor patient progress during rehabilitation; however, these sensors have yet to demonstrate the fidelity and lack the calibration paradigms necessary to be viable tools for clinical research. Therefore, the purpose of this study was to validate a low-cost wearable sensor that accurately measured peak knee extension during clinical exercises and needed no additional equipment for calibration. Knee flexion was quantified using a 9-axis motion sensor and directly compared to motion capture data. Peak extension values during seated knee extensions were accurate within 5 degrees across all subjects (RMS error: 2.6 degrees, P = 0.29) but less accurate during sit-to-stand exercises (RMS error: 16.6 degrees, P = 0.48). Knee flexion during gait strongly correlated (0.84 ≤ rxy ≤ 0.99) with motion capture measurements but demonstrated average errors of 10 degrees. This study demonstrated a low-cost sensor that satisfied our criteria: a simple calibration procedure resulting in accurate measures of joint function during clinical exercises, making it a feasible tool for continuous patient monitoring to guide regenerative rehabilitation.


Journal of Biomechanics | 2018

Impacts of maturation on the micromechanics of the meniscus extracellular matrix

Qing Li; Chao Wang; Biao Han; Feini Qu; Hao Qi; Christopher Y. Li; Robert L. Mauck; Lin Han

To elucidate how maturation impacts the structure and mechanics of meniscus extracellular matrix (ECM) at the length scale of collagen fibrils and fibers, we tested the micromechanical properties of fetal and adult bovine menisci via atomic force microscopy (AFM)-nanoindentation. For circumferential fibers, we detected significant increase in the effective indentation modulus, Eind, with age. Such impact is in agreement with the increase in collagen fibril diameter and alignment during maturation, and is more pronounced in the outer zone, where collagen fibrils are more aligned and packed. Meanwhile, maturation also markedly increases the Eind of radial tie fibers, but not those of intact surface or superficial layer. These results provide new insights into the effect of maturation on the assembly of meniscus ECM, and enable the design of new meniscus repair strategies by modulating local ECM structure and mechanical behaviors.


Contrast Media & Molecular Imaging | 2016

Cationic gadolinium chelate for magnetic resonance imaging of cartilaginous defects

Kido Nwe; Ching-Hui Huang; Feini Qu; Robert Warden-Rothman; Clare Y. Zhang; Robert L. Mauck; Andrew Tsourkas

The ability to detect meniscus defects by magnetic resonance arthrography (MRA) can be highly variable. To improve the delineation of fine tears, we synthesized a cationic gadolinium complex, (Gd-DOTA-AM4 )(2+) , that can electrostatically interact with Glycosaminoglycans (GAGs). The complex has a longitudinal relaxivity (r1) of 4.2 mM(-1) s(-1) and is highly stable in serum. Its efficacy in highlighting soft tissue tears was evaluated in comparison to a clinically employed contrast agent (Magnevist) using explants obtained from adult bovine menisci. In all cases, Gd-DOTA-AM4 appeared to improve the ability to detect the soft tissue defect by providing increased signal intensity along the length of the tear. Magnevist shows a strong signal near the liquid-meniscus interface, but much less contrast is observed within the defect at greater depths. This provides initial evidence that cationic contrast agents can be used to improve the diagnostic accuracy of MRA. Copyright


Archive | 2014

Basic Science of Meniscus Repair: Limitations and Emerging Strategies

Feini Qu; Matthew B. Fisher; Robert L. Mauck

Meniscal tears, especially in the inner avascular zone, have limited healing capacity and a high failure rate when repair is attempted. Endogenous repair, characterized by cell proliferation and matrix deposition at the injury site, is hindered by a lack of vascular supply, low cell density, and a catabolic state induced by inflammation. To biologically augment the healing response, experimental methods have focused on directly addressing these issues by enhancing vascularity, increasing cellularity, and providing an instructive extracellular environment via biochemical and mechanical cues. With further clinical development, these emerging regenerative strategies have potential to render meniscal repair a favorable operation in patients who would otherwise undergo partial meniscectomy (removal of the damaged segment).

Collaboration


Dive into the Feini Qu's collaboration.

Top Co-Authors

Avatar

Robert L. Mauck

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

John L. Esterhai

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew B. Fisher

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josh R. Baxter

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge