Fekade Bruck Sime
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fekade Bruck Sime.
Annals of Intensive Care | 2012
Fekade Bruck Sime; Michael S. Roberts; Sandra L. Peake; Jeffrey Lipman; Jason A. Roberts
The pharmacokinetics of beta-lactam antibiotics in intensive care patients may be profoundly altered due to the dynamic, unpredictable pathophysiological changes that occur in critical illness. For many drugs, significant increases in the volume of distribution and/or variability in drug clearance are common. When “standard” beta-lactam doses are used, such pharmacokinetic changes can result in subtherapeutic plasma concentrations, treatment failure, and the development of antibiotic resistance. Emerging data support the use of beta-lactam therapeutic drug monitoring (TDM) and individualized dosing to ensure the achievement of pharmacodynamic targets associated with rapid bacterial killing and optimal clinical outcomes. The purpose of this work was to describe the pharmacokinetic variability of beta-lactams in the critically ill and to discuss the potential utility of TDM to optimize antibiotic therapy through a structured literature review of all relevant publications between 1946 and October 2011. Only a few studies have reported the utility of TDM as a tool to improve beta-lactam dosing in critically ill patients. Moreover, there is little agreement between studies on the pharmacodynamic targets required to optimize antibiotic therapy. The impact of TDM on important clinical outcomes also remains to be established. Whereas TDM may be theoretically rational, clinical studies to assess utility in the clinical setting are urgently required.
Journal of Antimicrobial Chemotherapy | 2014
Gloria Wong; Alexander Brinkman; Russell J. Benefield; Mieke Carlier; Jan J. De Waele; Najoua El Helali; Otto R. Frey; Stéphan Juergen Harbarth; Angela Huttner; Brett C. McWhinney; Benoit Misset; Federico Pea; Judit Preisenberger; Michael S. Roberts; Thomas A. Robertson; Anka C. Roehr; Fekade Bruck Sime; Fabio Silvio Taccone; Jacobus P.J. Ungerer; Jeffrey Lipman; Jason A. Roberts
OBJECTIVES Emerging evidence supports the use of therapeutic drug monitoring (TDM) of β-lactams for intensive care unit (ICU) patients to optimize drug exposure, although limited detail is available on how sites run this service in practice. This multicentre survey study was performed to describe the various approaches used for β-lactam TDM in ICUs. METHODS A questionnaire survey was developed to describe various aspects relating to the conduct of β-lactam TDM in an ICU setting. Data sought included: β-lactams chosen for TDM, inclusion criteria for selecting patients, blood sampling strategy, analytical methods, pharmacokinetic (PK)/pharmacodynamic (PD) targets and dose adjustment strategies. RESULTS Nine ICUs were included in this survey. Respondents were either ICU or infectious disease physicians, pharmacists or clinical pharmacologists. Piperacillin (co-formulated with tazobactam) and meropenem (100% of units surveyed) were the β-lactams most commonly subject to TDM, followed by ceftazidime (78%), ceftriaxone (43%) and cefazolin (43%). Different chromatographic and microbiological methods were used for assay of β-lactam concentrations in blood and other biological fluids (e.g. CSF). There was significant variation in the PK/PD targets (100% fT>MIC up to 100% fT>4×MIC) and dose adjustment strategies used by each of the sites. CONCLUSIONS Large variations were found in the type of β-lactams tested, the patients selected for TDM and drug assay methods. Significant variation observed in the PK/PD targets and dose adjustment strategies used supports the need for further studies that robustly define PK/PD targets for ICU patients to ensure a greater consistency of practice for dose adjustment strategies for optimizing β-lactam dosing with TDM.
Journal of Chromatography B | 2014
Fekade Bruck Sime; Michael S. Roberts; Jason A. Roberts; Thomas A. Robertson
There is strong evidence in literature supporting the benefit of monitoring plasma concentrations of β-lactam antibiotics in the critically ill to ensure appropriateness of dosing. The objective of this work was to develop a method for the simultaneous determination of total concentrations piperacillin, benzylpenicillin, flucloxacillin, meropenem, ertapenem, cephazolin and ceftazidime in human plasma. Sample preparation involved protein precipitation with acetonitrile containing 0.1% formic acid and subsequent dilution of supernatant with 0.1% formic acid in water. Chromatographic separation was achieved on a reversed phase column (C18, 2.6 μm, 2.1 × 50 mm) via gradient elution using water and acetonitrile, each containing 0.1% formic acid, as mobile phase. Tandem mass spectrometry (MSMS) analysis was performed, after electrospray ionization in the positive mode, with multiple reaction monitoring (MRM). The method is accurate with the inter-day and intra-day accuracies of quality control samples (QCs) ranging from 95 to 107% and 95 to 108%, respectively. It is also precise with intra-day and inter-day coefficient of variations ranging from 4 to 12% and 5 to 14%, respectively. The lower limit of quantification was 0.1 μg/mL for each antibiotic except flucloxacillin (0.25 μg/mL). Recovery was greater than 96% for all analytes except for ertapenem (78%). Coefficients of variation for the matrix effect were less than 10% over the six batches of plasma. Analytes were stable over three freeze-thaw cycles, and for reasonable hours on the bench top as well as post-preparation. This novel liquid chromatography tandem mass spectrometry method proved accurate, precise and applicable for therapeutic drug monitoring and pharmacokinetic studies of the selected β-lactam antibiotics.
BMC Infectious Diseases | 2014
Gloria Wong; Fekade Bruck Sime; Jeffrey Lipman; Jason A. Roberts
High mortality and morbidity rates associated with severe infections in the critically ill continue to be a significant issue for the healthcare system. In view of the diverse and unique pharmacokinetic profile of drugs in this patient population, there is increasing use of therapeutic drug monitoring (TDM) in attempt to optimize the exposure of antibiotics, improve clinical outcome and minimize the emergence of antibiotic resistance. Despite this, a beneficial clinical outcome for TDM of antibiotics has only been demonstrated for aminoglycosides in a general hospital patient population. Clinical outcome studies for other antibiotics remain elusive. Further, there is significant variability among institutions with respect to the practice of TDM including the selection of patients, sampling time for concentration monitoring, methodologies of antibiotic assay, selection of PK/PD targets as well as dose optimisation strategies. The aim of this paper is to review the available evidence relating to practices of antibiotic TDM, and describe how TDM can be applied to potentially improve outcomes from severe infections in the critically ill.
Current Opinion in Pharmacology | 2015
Fekade Bruck Sime; Andrew A. Udy; Jason A. Roberts
The renal clearance of antibiotics may be elevated in some critically ill patients. This paper reviews this recently described phenomenon, referred to as augmented renal clearance (ARC). ARC is considered to be driven by pathophysiological elevation of glomerular filtration, and is defined as a creatinine clearance >130mL/min/173m(2). This in turn promotes very low antibiotic concentrations. This effect may lead to adverse clinical outcomes, particularly with beta-lactam antibiotics, as they require prolonged exposure for optimal antibacterial activity. The use of extended or continuous infusions is an effective strategy to improve exposure. However, because the effect of ARC is potentially quite variable, regular therapeutic drug monitoring (TDM) may be necessary to ensure all patients achieve effective concentrations.
Clinical Microbiology and Infection | 2015
Fekade Bruck Sime; Michael S. Roberts; Jason A. Roberts
Treatment of infectious diseases is becoming increasingly challenging with the emergence of less-susceptible organisms that are poorly responsive to existing antibiotic therapies, and the unpredictable pharmacokinetic alterations arising from complex pathophysiologic changes in some patient populations. In view of this fact, there has been a progressive work on novel dose optimization strategies to renew the utility of forgotten old antibiotics and to improve the efficacy of those currently in use. This review summarizes the different approaches of optimization of antibiotic dosing regimens and the special patient populations which may benefit most from these approaches. The existing methods are based on monitoring of antibiotic concentrations and/or use of clinical covariates. Measured concentrations can be correlated with predefined pharmacokinetic/pharmacodynamic targets to guide clinicians in predicting the necessary dose adjustment. Dosing nomograms are also available to relate observed concentrations or clinical covariates (e.g. creatinine clearance) with optimal dosing. More precise dose prediction based on observed covariates is possible through the application of population pharmacokinetic models. However, the most accurate estimation of individualized dosing requirements is achieved through Bayesian forecasting which utilizes both measured concentration and clinical covariates. Various software programs are emerging to ease clinical application. Whilst more studies are warranted to clarify the clinical outcomes associated with the different dose optimization approaches, severely ill patients in the course of marked infections and/or inflammation including those with sepsis, septic shock, severe trauma, burns injury, major surgery, febrile neutropenia, cystic fibrosis, organ dysfunction and obesity are those groups which may benefit most from individualized dosing.
Antimicrobial Agents and Chemotherapy | 2014
Fekade Bruck Sime; Michael S. Roberts; Morgyn S. Warner; Uwe Hahn; Thomas A. Robertson; Sue Yeend; Andy Phay; Sheila Lehman; Jeffrey Lipman; Sandra L. Peake; Jason A. Roberts
ABSTRACT This study assessed the pharmacokinetics and dosing adequacy of piperacillin in febrile neutropenic patients after the first dose. Pharmacokinetic analysis was performed using noncompartmental methods. We observed an elevated volume of distribution (29.7 ± 8.0 liters [mean ± standard deviation]) and clearance (20.2 ± 7.5 liters/h) compared to data from other patient populations. Antibiotic exposure did not consistently result in therapeutic targets. We conclude that alternative dosing strategies guided by therapeutic drug monitoring may be required to optimize exposure.
Journal of Antimicrobial Chemotherapy | 2015
Fekade Bruck Sime; Michael S. Roberts; Ing Soo Tiong; Julia H. Gardner; Sheila Lehman; Sandra L. Peake; Uwe Hahn; Morgyn S. Warner; Jason A. Roberts
OBJECTIVES The objectives of this study were to describe piperacillin exposure in febrile neutropenia patients and determine whether therapeutic drug monitoring (TDM) can be used to increase the achievement of pharmacokinetic (PK)/pharmacodynamic (PD) targets. METHODS In a prospective randomized controlled study (Australian New Zealand Registry, ACTRN12615000086561), patients were subjected to TDM for 3 consecutive days. Dose was adjusted in the intervention group to achieve a free drug concentration above the MIC for 100% of the dose interval (100% fT>MIC), which was also the primary outcome measure. The secondary PK/PD target was 50% fT>MIC. Duration of fever and days to recovery from neutropenia were recorded. RESULTS Thirty-two patients were enrolled. Initially, patients received 4.5 g of piperacillin/tazobactam every 8 h or every 6 h along with gentamicin co-therapy in 30/32 (94%) patients. At the first TDM, 7/32 (22%) patients achieved 100% fT>MIC and 12/32 (38%) patients achieved 50% fT>MIC. Following dose adjustment, 11/16 (69%) of intervention patients versus 3/16 (19%) of control patients (P = 0.012) attained 100% fT>MIC, and 15/16 (94%) of intervention patients versus 5/16 (31%) of control patients (P = 0.001) achieved 50% fT>MIC. After the third TDM, the proportion of patients attaining 100% fT>MIC improved from a baseline 3/16 (19%) to 11/15 (73%) in the intervention group, while it declined from 4/16 (25%) to 1/15 (7%) in the control group. No difference was noted in the duration of fever and days to recovery from neutropenia. CONCLUSIONS Conventional doses of piperacillin/tazobactam may not offer adequate piperacillin exposure in febrile neutropenic patients. TDM provides useful feedback of dosing adequacy to guide dose optimization.
Current Opinion in Infectious Diseases | 2015
Suzanne L. Parker; Fekade Bruck Sime; Jason A. Roberts
Purpose of review Recent studies suggest that contemporary antibiotic dosing is unlikely to achieve best outcomes for critically ill patients because of extensive pharmacokinetic variability and altered pharmacodynamics. Dose adaptation is considered quite challenging because of unpredictable dose–exposure relationships. Consequently, individualization of antibiotic dosing has been advocated. Herein, we describe recent developments in the optimization of antibiotic dosing in the critically ill. Recent findings Conventional doses of many antibiotics frequently result in sub or supratherapeutic exposures in the critically ill. Clinical studies continue to illustrate that dose–exposure relationships are highly variable in severely ill patients. Dose optimization based on pharmacokinetic/pharmacodynamic principles can effectively improve antibiotic exposure. Therapeutic drug monitoring (TDM) with adaptive feedback is likely to be the most robust approach to optimize dosing for individual patients. This more accurate approach to dosing is made possible with the user-friendly dosing software that is emerging. Summary The scope of TDM is broadening from the traditional focus on prevention of toxicity, to include optimization of antibiotic exposure thereby improving patient outcomes. However, the evidence relating TDM practice with improved clinical outcome remains limited. Well designed, multicentre, randomized controlled studies are warranted.
Antimicrobial Agents and Chemotherapy | 2017
Fekade Bruck Sime; Adam Johnson; Sarah Whalley; Anahi Santoyo-Castelazo; Kathie Ann Walters; Jeffrey Lipman; William W. Hope; Jason A. Roberts
ABSTRACT There has been a resurgence of interest in aerosolization of antibiotics for treatment of patients with severe pneumonia caused by multidrug-resistant pathogens. A combination formulation of amikacin-fosfomycin is currently undergoing clinical testing although the exposure-response relationships of these drugs have not been fully characterized. The aim of this study was to describe the individual and combined antibacterial effects of simulated epithelial lining fluid exposures of aerosolized amikacin and fosfomycin against resistant clinical isolates of Pseudomonas aeruginosa (MICs of 16 mg/liter and 64 mg/liter) and Klebsiella pneumoniae (MICs of 2 mg/liter and 64 mg/liter) using a dynamic hollow-fiber infection model over 7 days. Targeted peak concentrations of 300 mg/liter amikacin and/or 1,200 mg/liter fosfomycin as a 12-hourly dosing regimens were used. Quantitative cultures were performed to describe changes in concentrations of the total and resistant bacterial populations. The targeted starting inoculum was 108 CFU/ml for both strains. We observed that neither amikacin nor fosfomycin monotherapy was bactericidal against P. aeruginosa while both were associated with rapid amplification of resistant P. aeruginosa strains (about 108 to 109 CFU/ml within 24 to 48 h). For K. pneumoniae, amikacin but not fosfomycin was bactericidal. When both drugs were combined, a rapid killing was observed for P. aeruginosa and K. pneumoniae (6-log kill within 24 h). Furthermore, the combination of amikacin and fosfomycin effectively suppressed growth of resistant strains of P. aeruginosa and K. pneumoniae. In conclusion, the combination of amikacin and fosfomycin was effective at maximizing bacterial killing and suppressing emergence of resistance against these clinical isolates.