Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fekadu Kassie is active.

Publication


Featured researches published by Fekadu Kassie.


Mutation Research-reviews in Mutation Research | 2000

Single cell gel electrophoresis assay: a new technique for human biomonitoring studies.

Fekadu Kassie; Wolfram Parzefall; Siegfried Knasmüller

Human biomonitoring using the single cell gel electrophoresis (SCGE) or comet assay is a novel approach for the assessment of genetic damage in exposed populations. This assay enables the detection of various forms of DNA damage in individual cells with ease and speed and is, therefore, well suited to the analysis of a large group in a population. Here, application of SCGE assay in the identification of dietary protective factors, in clinical studies and in monitoring the risk of DNA damage resulting from occupational, environmental or lifestyle exposures is reviewed. Also, the comparative sensitivity of SCGE assay and conventional cytogenetic tests to detect genetic damage is discussed. Finally, strengths and shortcomings of the SCGE assay are addressed.


Mutation Research | 2001

Effects of cruciferous vegetables and their constituents on drug metabolizing enzymes involved in the bioactivation of DNA-reactive dietary carcinogens

Hans Steinkellner; Christian Freywald; Eva Nobis; Gerlinde Scharf; Monika Chabicovsky; Siegfried Knasmüller; Fekadu Kassie

Epidemiological studies give evidence that cruciferous vegetables (CF) protect humans against cancer, and also results from animal experiments show that they reduce chemically induced tumor formation. These properties have been attributed to alterations in the metabolism of carcinogens by breakdown products of glucosinolates, which are constituents of CF. The present article gives an overview on the present state of knowledge on the impact of CF and their constituents on enzymes that are involved in the metabolism of DNA-reactive carcinogens. The development of in vitro models with metabolically competent cell lines led to the detection of potent enzyme inducers contained in CF such as sulforaphane. Recently, we showed that Brassica juices induce glutathione-S-transferases (GST) and cytochrome P-450 1A2 in human hepatoma cells (HepG2) and protect against the genotoxic effects of B(a)P and other carcinogens. Earlier in vivo experiments with rodents indicated that indoles and isothiocyanates, two major groups of glucosinolate breakdown products, attenuate the effects of polycyclic aromatic hydrocarbons (PAHs) and nitrosamines via induction of GST and inhibition of cytochrome-P450 isoenzymes, respectively. Our own investigations showed that CF are also protective towards heterocyclic amines (HAs): Brussels sprouts- and garden cress juices attenuated IQ-induced DNA-damage and preneoplastic lesions in colon and liver of rats. These effects were paralleled by induction of uridine-di-phospho-glucuronosyl transferase (UDPGT) which is very probably the mechanism of protection against HAs by cruciferous vegetables. There is also evidence that consumption of CF might protect humans against cancer. In matched control intervention studies with these vegetables, it was shown that they induce GST-activities in humans but overall, results were inconclusive. Recently, we carried out crossover intervention studies and found pronounced GST-induction upon consumption of Brussels sprouts and red cabbage, whereas no effects were seen with white cabbage and broccoli. Furthermore, we found that the isoenzyme induced was GST-pi which plays an important role in protection against breast, bladder, colon and testicular cancer. No induction of the GST-alpha isoform could be detected. Urinary mutagenicity experiments gave further evidence that CF affect drug metabolism in humans. Consumption of red cabbage led to changes in the pattern of meat-derived urinary mutagenicity. Overall, CF are among the most promising chemopreventive dietary constituents and further elucidation of their protective mechanisms and the identification of active constituents may contribute to the development of highly protective Brassica varieties.


Mutation Research-reviews in Mutation Research | 2001

Use of the micronucleus assay with exfoliated epithelial cells as a biomarker for monitoring individuals at elevated risk of genetic damage and in chemoprevention trials.

Bernhard J. Majer; Brenda Laky; Siegfried Knasmüller; Fekadu Kassie

This review summarises the current database on the micronucleus (MN) assay with exfoliated cells (MEC assay) and evaluates the predictive value of this model for the detection of human cancer risks. The MEC test is a cost effective, non-invasive method, in which the formation of MN in exfoliated cells from different organs, such as oral and nasal cavity, bladder, cervix, and oesophagus is used as an endpoint to detect endogenous, lifestyle, occupational and environmental exposures to genotoxins as well as chemoprotection of various compounds in intervention studies. The results suggest that the MN assay might be a useful approach to identify antimutagens which are protective in humans. Based on the comparison of the data from MN experiments with results from epidemiological cancer studies, we conclude that the MEC assay is a useful biomarker for the detection of human cancer risk in organs to which the MEC test can be applied. However, the current data base is not sufficient to draw a firm conclusion on the specificity of this approach.


Carcinogenesis | 2010

Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol.

Tamene Melkamu; Xiaoxiao Zhang; Jiankang Tan; Yan Zeng; Fekadu Kassie

MicroRNAs (miRNAs) are small, non-protein-coding RNAs that can function as tumor suppressors or oncogenes. Deregulation of miRNA expression has been reported in lung cancer. However, modulation of miRNA expression by chemopreventive agents remains to be defined. In the present study, we examined if the chemopreventive agent indole-3-carbinol (I3C) reversed vinyl carbamate (VC)-induced deregulation of miRNA levels in lung tissues of female A/J mice. Lung tissues were obtained from a previous chemoprevention study, in which mice were treated with VC and given I3C in the diet for 15 weeks. Microarray studies revealed alterations in the expression of a number of miRNAs in lung tumors relative to that of normal lungs. miR-21, mir-31, miR-130a, miR-146b and miR-377 were consistently upregulated, whereas miR-1 and miR-143 were downregulated in lung tumors relative to normal lungs. In mice treated with VC and given I3C in the diet, levels of miR-21, mir-31, miR-130a, miR-146b and miR-377 were reduced relative to the level in mice treated with the carcinogen only. The results of the microarray study were confirmed by quantitative reverse transcription-polymerase chain reaction and gel analysis of polymerase chain reaction products. Further studies with miR-21 indicated that phosphatase and tensin homolog, programmed cell death 4 and rich protein with Kazal motifs are potential targets for the oncogenic effect of miR-21 and the chemopreventive activity of I3C. Taken together, we showed here that miRNAs are deregulated during VC-induced mouse lung tumorigenesis and their levels are modulated by I3C. Therefore, miRNAs and their target genes are promising biomarkers for the diagnosis of lung cancer and efficacy of chemopreventive/chemotherapeutic agents.


Mutation Research | 2001

Impact of bacteria in dairy products and of the intestinal microflora on the genotoxic and carcinogenic effects of heterocyclic aromatic amines.

Siegfried Knasmüller; Hans Steinkellner; Alexander M. Hirschl; Eva Nobis; Fekadu Kassie

This article gives a short overview on the present state of knowledge of the effects of the intestinal microflora on the health hazards of heterocyclic aromatic amines (HAs). Results of single cell gel electrophoresis assays with conventional, germ free and human flora associated rats indicate that the presence of intestinal microorganisms strongly enhances the induction of DNA-damage in colon and liver cells by IQ. Furthermore, it was found that supplementation of the feed with Lactobacilli attenuates the induction of colon cancer by this same amine. These recent findings suggest that the intestinal microflora and lactic acid bacilli in dairy products strongly affect the health risks of HAs. Nevertheless, most previous experiments with HAs focused on the involvement of mammalian enzymes in the biotransformation of these compounds and only a few articles are available which concern interactions of bacteria with HAs. Some of these studies suggested that the formation of directly mutagenic hydroxy-metabolites of the amines by fecal bacteria might be an important activation pathway but it turned out that the hydroxy-derivative of IQ is not genotoxic in mammalian cells and does not cause colon cancer in laboratory rodents. There is some evidence that hydrolysis of HA-metabolites by bacterial ss-glucuronidase might play a role in the activation of HAs but experimental data are scarce and no firm conclusions can be drawn at present. The most important detoxification mechanism appears to be the direct binding of the HAs to the cell walls of certain bacterial strains contained in fermented foods. It was shown that these effects do also take place under physiologically relevant conditions. Overall, it seems that intestinal bacteria play a key role in the activation and detoxification of HAs which has been an area of research long ignored. The elucidation of these mechanisms may enable the development of biomarkers for colon cancer risk and nutritional strategies of protection.


Chemico-Biological Interactions | 1996

Genotoxic effects of crude juices from Brassica vegetables and juices and extracts from phytopharmaceutical preparations and spices of cruciferous plants origin in bacterial and mammalian cells

Fekadu Kassie; Wolfram Parzefall; S. R. R. Musk; Ian T. Johnson; Günther Lamprecht; Gerhard Sontag; Siegfried Knasmüller

Crude juices of eight Brassica vegetables as well as juices and extracts of spices and phytopharmaceutical preparations from cruciferous vegetables were tested for induction of point mutations in Salmonella TA98 and TA100, repairable DNA damage in E.coli K-12 cells and clastogenic effects in mammalian cells. In bacterial assays, all juices caused genotoxic effects in the absence of metabolic activation, the ranking order being: Brussels sprouts > white cabbage > cauliflower > green cabbage > kohlrabi > broccoli > turnip > black radish. In experiments with mammalian cells, six juices induced structural chromosome aberrations. Brussels sprouts, white and green cabbage caused the strongest effects (800 microliters of juice induced a 5-fold increase over the background). In sister chromatid exchange assays, positive results were measured as well, but the effects were less pronounced. With all juices the genotoxic effects seen in mammalian cells were paralleled by a pronounced decrease in cell viability. Column fractionation experiments showed that 70-80% of the total genotoxic activity of the juices is found in the fraction which contains isothiocyanates and other breakdown products of glucosinolates, whereas phenolics and flavonoids contributed to a lesser extent to the overall effects. On the basis of these findings, and considering the negative results obtained with non-cruciferous vegetables (tomato, carrot and green pepper), it seems likely that the genotoxic effects of the juices are due to specific constituents of cruciferous plants such as glucosinolates and/or their breakdown products, in particular, isothiocyanates, which we found previously to be potent genotoxins in bacterial and mammalian cells. Finally, spices (mustards and horse radish paste) and phytopharmaceutical preparations were tested in bacterial assays. Mustards and horse radish caused very weak effects while most of the pharmaceutical preparations gave negative results, except cabbage tablets, which caused a strong and dose dependent induction of his revertants in Salmonella TA100. The present findings clearly indicate that cruciferous vegetables contain DNA damaging constituents. These observations are in contrast to earlier findings, which emphasized the antimutagenic effects of vegetable juices and also raise the question whether greatly increased consumption of Brassica vegetables or their concentrated constituents as a means for cancer prevention is indeed recommendable.


International Journal of Cancer | 2001

Khat (Catha edulis) consumption causes genotoxic effects in humans

Fekadu Kassie; F. Darroudi; Kundi M; Rolf Schulte-Hermann; Siegfried Knasmüller

We used the micronucleus (MN) test to determine the genetic damage caused by khat, a widely consumed psychostimulant plant, in exfoliated cells of volunteers who chewed the drug on a regular basis. In the first study in which we compared the frequency of MN in buccal and bladder mucosa cells in 20 khat consumers (10–160 g/day) and 10 controls, a pronounced (8‐fold) increase in micronucleated buccal mucosa cells was seen among khat consumers; khat consumption did not lead to a detectable elevation of micronucleated bladder mucosa cells. Among heavy khat chewers, 81% of the MN had a centromere signal indicating that khat is aneuploidogenic. To investigate the effect of simultaneous consumption of tobacco and alcoholic beverages, we compared the MN frequency in buccal cells of 25 khat consumers (20–85 g/day) who smoked cigarettes (15–60/day) and drank alcoholic beverages (15–80 g of pure ethanol/day) with a control group (control group I) of 25 individuals matched for age, body weight, tobacco and alcohol consumption and with another control group of 25 individuals (control group II) not consuming any of the drugs. The frequency of buccal mucosa cells with MN was higher in control group I than in group II and the effect of khat, tobacco and alcohol was found to be additive. A time‐kinetics study on khat‐induced MN showed that the highest frequency of MN was observed during the fourth week after consumption. In light of the large body of evidence on the close association between genetic damage and cancer, these results suggest that khat consumption, especially when accompanied by alcohol and tobacco consumption, might be a potential cause of oral malignancy.


Chemico-Biological Interactions | 2000

Genotoxic effects of allyl isothiocyanate (AITC) and phenethyl isothiocyanate (PEITC)

Fekadu Kassie; Siegfried Knasmüller

Two isothiocyanates (ITCs) commonly found in human diet, allyl isothiocyanate (AITC) and phenethyl isothiocyanate (PEITC), were tested for genotoxic effects in a battery of assays: Salmonella/microsome assay with TA 98 and TA 100, differential DNA repair assay with E. coli and micronucleus (MN) induction assay with human derived Hep G2 cells. Albeit to a different degree, both ITCs induced genotoxic effects in all test systems. AITC was more genotoxic in bacterial test systems than in Hep G2 cells; in contrast, the effect of PEITC was stronger in Hep G2 cells. In in vivo assays with E. coli indicators in which mice were exposed to relatively high doses of the compounds (90 and 270 mg/kg), AITC induced moderate but significant effects; PEITC failed to induce significant effects in any of the organs. To find out the reason for the weak genotoxicity of AITC and PEITC under in vivo test conditions, we exposed E. coli indicator cells to the test substances in the absence or presence of rat liver homogenate (with and without cofactors), bovine serum albumin (BSA) and human saliva. All of them markedly attenuated the genotoxicity of AITC and PEITC, implying that the test substances are detoxified by direct non-enzymatic binding to proteins. Additional experiments carried out on the mechanistic aspects of AITC and PEITC-induced genotoxicity showed that the compounds induce the formation of thiobarbituric acid reactive substances (TBARS) in Hep G2 cells. Furthermore, in in vitro assays with E. coli, radical scavengers reduced the differential DNA damage induced by AITC and PEITC. The latter two findings give a clue that reactive oxygen species might be involved in the genotoxic effect of the ITCs. Although ITCs have been repeatedly advocated as very promising anticancer agents, the data presented here indicate that the compounds are genotoxic, and probably carcinogenic, in their own right.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 1997

Genotoxic effects of three Fusarium mycotoxins, fumonisin B1, moniliformin and vomitoxin in bacteria and in primary cultures of rat hepatocytes

Siegfried Knasmüller; Nikolaus Bresgen; Fekadu Kassie; Volker Mersch-Sundermann; W.C.A. Gelderblom; Edith Zöhrer; Peter Eckl

The genotoxic effects of three widespread Fusarium toxins, vomitoxin (VOM), moniliformin (MON) and fumonisin B1 (FB1) were investigated in bacterial tests and in micronucleus (MN) and chromosomal aberration (CA) assays with primary rat hepatocytes. All three toxins were devoid of activity in gene mutation assays with Salmonella typhimurium strains TA98 and TA100 and in SOS chromotests with E. coli strain PQ37 in the presence and absence of metabolic activation. FB1 and VOM gave negative results in differential DNA repair assays with E. coli K-12 strains (343/753, uvrB/recA and 343/765, uvr+/rec+); with MON, a marginal effect was seen in the absence of metabolic activation mix at relatively high concentrations (> or = 55 micrograms/ml). In metabolically competent rat hepatocytes stimulated to proliferate with EGF and subphysiological Ca2+ concentrations, a decrease of cell division was observed with all three toxins at concentrations > or = 10 micrograms/ml, VOM was strongly cytotoxic at 100 micrograms/ml. All three mycotoxins caused moderate increases of the MN frequencies at low concentrations (< or = 1 microgram/ml), but no clear dose-response effects were seen and at higher exposure levels the MN frequencies declined. In the CA experiments with hepatocytes, pronounced dose-dependent effects were observed with all three toxins. MON caused a 9-fold increase over the spontaneous background level after exposure of the cells to 1 microgram/ml for 3 h, with FB1 and VOM, the increases were 6- to 7-fold under identical experimental conditions. This is the first report on clastogenic effects of VOM and FB1 in mammalian cells, with MON induction of CAs in V-79 cells has been described earlier. Since all three mycotoxins caused CAs at very low concentration levels in liver cells in vitro, it is possible that such effects may also occur in humans and mammals upon consumption of Fusarium-infected cereals.


Food and Chemical Toxicology | 2002

Search for dietary antimutagens and anticarcinogens: methodological aspects and extrapolation problems

Siegfried Knasmüller; H. Steinkellner; Bernhard J. Majer; E.C. Nobis; Gerlinde Scharf; Fekadu Kassie

It is well documented that dietary factors play a crucial role in the aetiology of human cancer and strong efforts have been made to identify protective (antimutagenic and anticarcinogenic) substances in foods. Although numerous studies have been published, it is problematic to use these results for the development of nutritional strategies. The aim of this article is a critical discussion of the pitfalls and problems associated with the search for protective compounds. The main obstacles in regard to the extrapolation of the data to the human situation arise from: (i) the use of inadequate experimental in vitro models, which do not reflect protective mechanisms in man and therefore give misleading results; (ii) the use of genotoxins and carcinogens that are not relevant for humans; (iii) the lack of knowledge about dose-effect relationships of DNA-protective and cancer protective dietary constituents; (iv) the use of exposure concentrations in animal models which exceed by far the human exposure levels; and finally (v) the lack of knowledge on the time-kinetics of protective effects. More relevant data can be expected from in vitro experiments with cells possessing inducible phase I and phase II enzymes, short-term in vivo models with laboratory animals which enable the measurement of effects in organs that are targets for tumour formation, and human biomonitoring studies in which endpoints are used that are related to DNA damage and cancer.

Collaboration


Dive into the Fekadu Kassie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuemin Qian

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Balbo

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge