Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fekret Osman is active.

Publication


Featured researches published by Fekret Osman.


Molecular Cell | 2003

Generating Crossovers by Resolution of Nicked Holliday Junctions: A Role for Mus81-Eme1 in Meiosis

Fekret Osman; Julie Dixon; Claudette L. Doe; Matthew C. Whitby

The double Holliday junction (dHJ) is generally regarded to be a key intermediate of meiotic recombination, whose resolution is critical for the formation of crossover recombinants. In fission yeast, the Mus81-Eme1 endonuclease has been implicated in resolving dHJs. Consistent with this role, we show that Mus81-Eme1 is required for generating meiotic crossovers. However, purified Mus81-Eme1 prefers to cleave junctions that mimic those formed during the transition from double-strand break to dHJ. Crucially, these junctions are cleaved by Mus81-Eme1 in precisely the right orientation to guarantee the formation of a crossover every time. These data demonstrate how crossovers could arise without forming or resolving dHJs using an enzyme that is widely conserved amongst eukaryotes.


Molecular Cell | 2010

A Histone-Fold Complex and FANCM Form a Conserved DNA-Remodeling Complex to Maintain Genome Stability

Zhijiang Yan; Mathieu Delannoy; Chen Ling; Danielle L. Daee; Fekret Osman; Parameswary A. Muniandy; Xi Shen; Anneke B. Oostra; Hansen Du; Jurgen Steltenpool; Ti Lin; Beatrice Schuster; Chantal Décaillet; Andrzej Stasiak; Alicja Z. Stasiak; Stacie Stone; Maureen E. Hoatlin; Detlev Schindler; Christopher L. Woodcock; Hans Joenje; Ranjan Sen; Johan P. de Winter; Lei Li; Michael M. Seidman; Matthew C. Whitby; Kyungjae Myung; Angelos Constantinou; Weidong Wang

FANCM remodels branched DNA structures and plays essential roles in the cellular response to DNA replication stress. Here, we show that FANCM forms a conserved DNA-remodeling complex with a histone-fold heterodimer, MHF. We find that MHF stimulates DNA binding and replication fork remodeling by FANCM. In the cell, FANCM and MHF are rapidly recruited to forks stalled by DNA interstrand crosslinks, and both are required for cellular resistance to such lesions. In vertebrates, FANCM-MHF associates with the Fanconi anemia (FA) core complex, promotes FANCD2 monoubiquitination in response to DNA damage, and suppresses sister-chromatid exchanges. Yeast orthologs of these proteins function together to resist MMS-induced DNA damage and promote gene conversion at blocked replication forks. Thus, FANCM-MHF is an essential DNA-remodeling complex that protects replication forks from yeast to human.


Molecular Cell | 2008

The FANCM Ortholog Fml1 Promotes Recombination at Stalled Replication Forks and Limits Crossing Over during DNA Double-Strand Break Repair

Weili Sun; Saikat Nandi; Fekret Osman; Jong Sook Ahn; Jovana Jakovleska; Alexander Lorenz; Matthew C. Whitby

Summary The Fanconi anemia (FA) core complex promotes the tolerance/repair of DNA damage at stalled replication forks by catalyzing the monoubiquitination of FANCD2 and FANCI. Intriguingly, the core complex component FANCM also catalyzes branch migration of model Holliday junctions and replication forks in vitro. Here we have characterized the ortholog of FANCM in fission yeast Fml1 in order to understand the physiological significance of this activity. We show that Fml1 has at least two roles in homologous recombination—it promotes Rad51-dependent gene conversion at stalled/blocked replication forks and limits crossing over during mitotic double-strand break repair. In vitro Fml1 catalyzes both replication fork reversal and D loop disruption, indicating possible mechanisms by which it can fulfill its pro- and antirecombinogenic roles.


Journal of Biological Chemistry | 2003

Cleavage of Model Replication Forks by Fission Yeast Mus81-Eme1 and Budding Yeast Mus81-Mms4

Matthew C. Whitby; Fekret Osman; Julie Dixon

The blockage of replication forks can result in the disassembly of the replicative apparatus and reversal of the fork to form a DNA junction that must be processed in order for replication to restart and sister chromatids to segregate at mitosis. Fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4 are endonucleases that have been implicated in the processing of aberrant DNA junctions formed at stalled replication forks. Here we have investigated the activity of purified Mus81-Eme1 and Mus81-Mms4 on substrates that resemble DNA junctions that are expected to form when a replication fork reverses. Both enzymes cleave Holliday junctions and substrates that resemble normal replication forks poorly or not at all. However, forks where the equivalents of either both the leading and lagging strands or just the lagging strand are juxtaposed at the junction point, or where either the leading or lagging strand has been unwound to produce a fork with a single-stranded tail, are cleaved well. Cleavage sites map predominantly between 3 and 6 bp 5′ of the junction point. For most substrates the leading strand template is cleaved. The sole exception is a fork with a 5′ single-stranded tail, which is cleaved in the lagging strand template.


Molecular and Cellular Biology | 2005

The F-Box DNA Helicase Fbh1 Prevents Rhp51-Dependent Recombination without Mediator Proteins

Fekret Osman; Julie Dixon; Alexis R. Barr; Matthew C. Whitby

ABSTRACT A key step in homologous recombination is the loading of Rad51 onto single-stranded DNA to form a nucleoprotein filament that promotes homologous DNA pairing and strand exchange. Mediator proteins, such as Rad52 and Rad55-Rad57, are thought to aid filament assembly by overcoming an inhibitory effect of the single-stranded-DNA-binding protein replication protein A. Here we show that mediator proteins are also required to enable fission yeast Rad51 (called Rhp51) to function in the presence of the F-box DNA helicase Fbh1. In particular, we show that the critical function of Rad22 (an orthologue of Rad52) in promoting Rhp51-dependent recombination and DNA repair can be mostly circumvented by deleting fbh1. Similarly, the reduced growth/viability and DNA damage sensitivity of an fbh1− mutant are variously suppressed by deletion of any one of the mediators Rad22, Rhp55, and Swi5. From these data we propose that Rhp51 action is controlled through an interplay between Fbh1 and the mediator proteins. Colocalization of Fbh1 with Rhp51 damage-induced foci suggests that this interplay occurs at the sites of nucleoprotein filament assembly. Furthermore, analysis of different fbh1 mutant alleles suggests that both the F-box and helicase activities of Fbh1 contribute to controlling Rhp51.


The EMBO Journal | 2005

Replication fork blockage by RTS1 at an ectopic site promotes recombination in fission yeast

Jong Sook Ahn; Fekret Osman; Matthew C. Whitby

Homologous recombination is believed to play important roles in processing stalled/blocked replication forks in eukaryotes. In accordance with this, recombination is induced by replication fork barriers (RFBs) within the rDNA locus. However, the rDNA locus is a specialised region of the genome, and therefore the action of recombinases at its RFBs may be atypical. We show here for the first time that direct repeat recombination, dependent on Rad22 and Rhp51, is induced by replication fork blockage at a site‐specific RFB (RTS1) within a ‘typical’ genomic locus in fission yeast. Importantly, when the RFB is positioned between the direct repeat, conservative gene conversion events predominate over deletion events. This is consistent with recombination occurring without breakage of the blocked fork. In the absence of the RecQ family DNA helicase Rqh1, deletion events increase dramatically, which correlates with the detection of one‐sided DNA double‐strand breaks at or near RTS1. These data indicate that Rqh1 acts to prevent blocked replication forks from collapsing and thereby inducing deletion events.


The EMBO Journal | 2007

Mus81 cleavage of Holliday junctions: a failsafe for processing meiotic recombination intermediates?

Louise J Gaskell; Fekret Osman; Robert J. C. Gilbert; Matthew C. Whitby

The Holliday junction (HJ) is a central intermediate of homologous recombination. Its cleavage is critical for the formation of crossover recombinants during meiosis, which in turn helps to establish chiasmata and promote genetic diversity. Enzymes that cleave HJs, called HJ resolvases, have been identified in all domains of life except eukaryotic nuclei. Controversially, the Mus81‐Eme1 endonuclease has been proposed to be an example of a eukaryotic nuclear resolvase. However, hitherto little or no HJ cleavage has been detected in recombinant preparations of Mus81‐Eme1. Here, we report the purification of active forms of recombinant Schizosaccharomyces pombe Mus81‐Eme1 and Saccharomyces cerevisiae Mus81‐Mms4, which display robust HJ cleavage in vitro, which, in the case of Mus81‐Eme1, is as good as the archetypal HJ resolvase RuvC in single turnover kinetic analysis. We also present genetic evidence that suggests that this activity might be utilised as a back‐up to Mus81‐Eme1s main activity of cleaving nicked HJs during meiosis in S. pombe.


Science | 2012

The Fission Yeast FANCM Ortholog Directs Non-Crossover Recombination During Meiosis

Alexander Lorenz; Fekret Osman; Weili Sun; Saikat Nandi; Roland Steinacher; Matthew C. Whitby

No Crossing Over To ensure the correct division of chromosome during the reduction division of meiosis, homologous chromosomes undergo double-strand breaks that—through crossing over and recombination—link the homologs together (and importantly introduce diversity into the genomes of gametes). But only a minority of these crossovers results in recombination—most are directed into non-crossover pathways. Lorenz et al. (p. 1585), working in the yeast Schizosaccharomyces pombe, and Crismani et al. (p. 1588), working in the higher plant Arabidopsis thaliana, looked for the factors that limit crossovers and promote non-crossover pathways. The homolog of the human Fanconi anemia complementation group M (FANCM) helicase protein was found to be a major meiotic anti-recombinase, which could drive meiotic recombination intermediates into the non-crossover pathway. A homolog of a human Fanconi anemia complementation group protein is involved in controlling crossing over during meiosis. The formation of healthy gametes depends on programmed DNA double-strand breaks (DSBs), which are each repaired as a crossover (CO) or non-crossover (NCO) from a homologous template. Although most of these DSBs are repaired without giving COs, little is known about the genetic requirements of NCO-specific recombination. We show that Fml1, the Fanconi anemia complementation group M (FANCM)–ortholog of Schizosaccharomyces pombe, directs the formation of NCOs during meiosis in competition with the Mus81-dependent pro-CO pathway. We also define the Rad51/Dmc1–mediator Swi5-Sfr1 as a major determinant in biasing the recombination process in favor of Mus81, to ensure the appropriate amount of COs to guide meiotic chromosome segregation. The conservation of these proteins from yeast to humans suggests that this interplay may be a general feature of meiotic recombination.


Current Genetics | 2000

The genetic control of spontaneous and UV-induced mitotic intrachromosomal recombination in the fission yeast Schizosaccharomyces pombe

Fekret Osman; Melissa Adriance; Shirley McCready

Abstract An artificially created non-tandem heteroallelic duplication was constructed to assay mitotic intrachromosomal recombination in Schizosaccharomyces pombe. Two classes of recombinants could be distinguished: deletion-types, in which one copy of the duplicated sequence and the intervening sequence were lost, and conversion-types which retained the duplication. For spontaneous recombination, compared to wild-type cells, a rad22 mutant (corresponding to a Saccharomyces cerevisiae rad52 mutant) had wild-type levels of deletion-types, but was hypo-recombinant for conversion-types; rad16 (S. cerevisiae rad1), rad22 rad16 (S. cerevisiae rad52 rad1) and swi10 (S. cerevisiae rad10) mutants were hyper-recombinant for both types; rad22 swi10 (S. cerevisiae rad52 rad10) mutants were hypo-recombinant for both types; rhp51 (S. cerevisiae rad51) and rhp54 (S. cerevisiae rad54) mutants were hyper-recombinant for deletion-types, but almost completely lacked conversion-types. For wild-type cells, UV-irradiation induced both types of recombinant, but mainly conversion-types. All of the mutants lacked UV-induced recombination.


Mutation Research | 2000

Repair of UV damage in the fission yeast Schizosaccharomyces pombe

Shirley McCready; Fekret Osman; Akira Yasui

This review is concerned with repair and tolerance of UV damage in the fission yeast, Schizosaccharomyces pombe and with the differences between Sch. pombe and budding yeast, Saccharomyces cerevisiae in their response to UV irradiation. Sch. pombe is not as sensitive to ultra-violet radiation as Sac. cerevisiae nor are any of its mutants as sensitive as the most sensitive Sac. cerevisiae mutants. This can be explained in part by the fact that Sch. pombe, unlike budding yeast or mammalian cells, has an extra pathway (UVER) for excision of UV photoproducts in addition to nucleotide excision repair (NER). However, even in mutants lacking this additional pathway, there are significant differences between the two yeasts. Sch. pombe mutants that lack the alternative pathway are still more UV-resistant than wild-type Sac. cerevisiae; recombination mutants are significantly UV sensitive (unlike their Sac. cerevisiae equivalents); mutants lacking the second pathway are sensitized to UV by caffeine; and checkpoint mutants are relatively more sensitive than the budding yeast equivalents. In addition, Sch. pombe has no photolyase. Thus, the response to UV in the two yeasts has a number of significant differences, which are not accounted for entirely by the existence of two alternative excision repair pathways. The long G2 in Sch. pombe, its well-developed recombination pathways and efficient cell cycle checkpoints are all significant components in survival of UV damage.

Collaboration


Dive into the Fekret Osman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge