Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felice Iasevoli is active.

Publication


Featured researches published by Felice Iasevoli.


Psychopharmacology | 2013

Serotonin–glutamate and serotonin–dopamine reciprocal interactions as putative molecular targets for novel antipsychotic treatments: from receptor heterodimers to postsynaptic scaffolding and effector proteins

A. de Bartolomeis; Elisabetta F. Buonaguro; Felice Iasevoli

The physical and functional interactions between serotonin–glutamate and serotonin–dopamine signaling have been suggested to be involved in psychosis pathophysiology and are supposed to be relevant for antipsychotic treatment. Type II metabotropic glutamate receptors (mGluRs) and serotonin 5-HT2A receptors have been reported to form heterodimers that modulate G-protein-mediated intracellular signaling differentially compared to mGluR2 and 5-HT2A homomers. Additionally, direct evidence has been provided that D2 and 5-HT2A receptors form physical heterocomplexes which exert a functional cross-talk, as demonstrated by studies on hallucinogen-induced signaling. Moving from receptors to postsynaptic density (PSD) scenario, the scaffolding protein PSD-95 is known to interact with N-methyl-d-aspartate (NMDA), D2 and 5-HT2 receptors, regulating their activation state. Homer1a, the inducible member of the Homer family of PSD proteins that is implicated in glutamatergic signal transduction, is induced in striatum by antipsychotics with high dopamine receptor affinity and in the cortex by antipsychotics with mixed serotonergic/dopaminergic profile. Signaling molecules, such as Akt and glycogen-synthase-kinase-3 (GSK-3), could be involved in the mechanism of action of antipsychotics, targeting dopamine, serotonin, and glutamate neurotransmission. Altogether, these proteins stand at the crossroad of glutamate–dopamine–serotonin signaling pathways and may be considered as valuable molecular targets for current and new antipsychotics. The aim of this review is to provide a critical appraisal on serotonin–glutamate and serotonin–dopamine interplay to support the idea that next generation schizophrenia pharmacotherapy should not exclusively rely on receptor targeting strategies.


Molecular Neurobiology | 2014

Glutamatergic Postsynaptic Density Protein Dysfunctions in Synaptic Plasticity and Dendritic Spines Morphology: Relevance to Schizophrenia and Other Behavioral Disorders Pathophysiology, and Implications for Novel Therapeutic Approaches

Andrea de Bartolomeis; Gianmarco Latte; Carmine Tomasetti; Felice Iasevoli

Emerging researches point to a relevant role of postsynaptic density (PSD) proteins, such as PSD-95, Homer, Shank, and DISC-1, in the pathophysiology of schizophrenia and autism spectrum disorders. The PSD is a thickness, detectable at electronic microscopy, localized at the postsynaptic membrane of glutamatergic synapses, and made by scaffolding proteins, receptors, and effector proteins; it is considered a structural and functional crossroad where multiple neurotransmitter systems converge, including the dopaminergic, serotonergic, and glutamatergic ones, which are all implicated in the pathophysiology of psychosis. Decreased PSD-95 protein levels have been reported in postmortem brains of schizophrenia patients. Variants of Homer1, a key PSD protein for glutamate signaling, have been associated with schizophrenia symptoms severity and therapeutic response. Mutations in Shank gene have been recognized in autism spectrum disorder patients, as well as reported to be associated to behaviors reminiscent of schizophrenia symptoms when expressed in genetically engineered mice. Here, we provide a critical appraisal of PSD proteins role in the pathophysiology of schizophrenia and autism spectrum disorders. Then, we discuss how antipsychotics may affect PSD proteins in brain regions relevant to psychosis pathophysiology, possibly by controlling synaptic plasticity and dendritic spine rearrangements through the modulation of glutamate-related targets. We finally provide a framework that may explain how PSD proteins might be useful candidates to develop new therapeutic approaches for schizophrenia and related disorders in which there is a need for new biological treatments, especially against some symptom domains, such as negative symptoms, that are poorly affected by current antipsychotics.


Current Pharmaceutical Design | 2005

Dopamine-Glutamate Interaction and Antipsychotics Mechanism of Action: Implication for New Pharmacological Strategies in Psychosis

A. de Bartolomeis; G. Fiore; Felice Iasevoli

Schizophrenia is a severe mental illness characterized by behavioral and cognitive symptoms. Several lines of evidence focus on a direct involvement of the glutamatergic system in the pathophysiology of psychosis. The hypofunction of the ionotropic glutamate N-methyl-D-Aspartate Receptor (NMDA-R) has been proposed as a model of schizophrenia in humans. Cortical and subcortical glutamate release seems to be modulated by dopaminergic and, to a lesser extent, serotoninergic circuitries, and tuned by intracellular pathways. Although dopamine D(2) receptor blockade is a crucial mechanism of antipsychotics pharmacodynamic profile, a putative glutamatergic impact of these compounds is suggested by animal pharmacological isomorphisms of psychosis as well as by clinical studies. According to this view, the balance between D(2) antagonism and NMDA-R modulation may be pivotal for the improvement of both positive and negative symptoms. Recently, many pharmacological strategies involving glutamate receptors have been suggested, and novel compounds and pharmacological strategies acting on glutamate transmission are currently under evaluation: i) augmentation strategies improving NMDA-R transmission (glycine, D-serine, D-cycloserine, glycine transporter inhibitors); ii) ampakines, positive modulators of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor complex; iii) agonists of glutamate metabotropic receptors; iv) drugs involved in subcellular adaptation both at pre- and post-synaptic sites. Furthermore, molecular markers, suggesting modulation of glutamate circuitries after antipsychotics administration, are an attractive tool to shed more light on glutamate involvement in antipsychotics mechanism of action. In this review we provide a critical update of recent preclinical and clinical data on dopamine-glutamate interaction and its role in new pharmacological strategies for psychosis treatment.


European Journal of Pharmacology | 2012

Targeting glutamate system for novel antipsychotic approaches: Relevance for residual psychotic symptoms and treatment resistant schizophrenia

Andrea de Bartolomeis; Chiara Sarappa; Salvatore Magara; Felice Iasevoli

Antipsychotics are the mainstay of schizophrenia treatment. However, approximately one third of schizophrenic patients do not respond or respond poorly to antipsychotics. Therefore, there is a need for new approaches that can improve schizophrenia treatment significantly. Promising strategies arise from the modulation of glutamatergic system, according to its proposed involvement in schizophrenia pathogenesis. In this review, we critically updated preclinical and clinical data on the modulation of glutamate N-methyl-D-aspartate (NMDA) receptor activity by NMDA-Rs co-agonists, glycine transporters inhibitors, AMPAkines, mGluR5 agonists, NMDA-Rs partial agonists. We focused on: 1) preclinical results in animal models mimicking the pathophysiology of psychosis, mainly believed to be responsible of negative and cognitive symptoms, and predicting antipsychotic-like activity of these compounds; and 2) clinical efficacy in open-label and double-blind trials. Albeit promising preclinical findings for virtually all compounds, clinical efficacy has not been confirmed for D-cycloserine. Contrasting evidence has been reported for glycine and D-serine, that may however have a role as add-on agents. More promising results in humans have been found for glycine transporter inhibitors. AMPAkines appear to be beneficial as pro-cognitive agents, while positive allosteric modulators of mGluR5 have not been tested in humans. Memantine has been proposed in early stages of schizophrenia, as it may counteract the effects of glutamate excitotoxicity correlated to high glutamate levels, slowing the progression of negative symptoms associated to more advanced stages of the illness.


International Journal of Molecular Sciences | 2013

The melatonergic system in mood and anxiety disorders and the role of agomelatine: implications for clinical practice.

Domenico De Berardis; Stefano Marini; Michele Fornaro; Venkataramanujam Srinivasan; Felice Iasevoli; Carmine Tomasetti; Alessandro Valchera; Giampaolo Perna; Maria-Antonia Quera-Salva; Giovanni Martinotti; Massimo Di Giannantonio

Melatonin exerts its actions through membrane MT1/MT2 melatonin receptors, which belong to the super family of G-protein-coupled receptors consisting of the typical seven transmembrane domains. MT1 and MT2 receptors are expressed in various tissues of the body either as single ones or together. A growing literature suggests that the melatonergic system may be involved in the pathophysiology of mood and anxiety disorders. In fact, some core symptoms of depression show disturbance of the circadian rhythm in their clinical expression, such as diurnal mood and other symptomatic variation, or are closely linked to circadian system functioning, such as sleep-wake cycle alterations. In addition, alterations have been described in the circadian rhythms of several biological markers in depressed patients. Therefore, there is interest in developing antidepressants that have a chronobiotic effect (i.e., treatment of circadian rhythm disorders). As melatonin produces chronobiotic effects, efforts have been aimed at developing agomelatine, an antidepressant with melatonin agonist activity. The present paper reviews the role of the melatonergic system in the pathophysiology of mood and anxiety disorders and the clinical characteristics of agomelatine. Implications of agomelatine in “real world” clinical practice will be also discussed.


Neurochemical Research | 2013

Scaffolding Proteins of the Post-synaptic Density Contribute to Synaptic Plasticity by Regulating Receptor Localization and Distribution: Relevance for Neuropsychiatric Diseases

Felice Iasevoli; Carmine Tomasetti; Andrea de Bartolomeis

Synaptic plasticity represents the long lasting activity-related strengthening or weakening of synaptic transmission, whose well-characterized types are the long term potentiation and depression. Despite this classical definition, however, the molecular mechanisms by which synaptic plasticity may occur appear to be extremely complex and various. The post-synaptic density (PSD) of glutamatergic synapses is a major site for synaptic plasticity processes and alterations of PSD members have been recently implicated in neuropsychiatric diseases where an impairment of synaptic plasticity has also been reported. Among PSD members, scaffolding proteins have been demonstrated to bridge surface receptors with their intracellular effectors and to regulate receptors distribution and localization both at surface membranes and within the PSD. This review will focus on the molecular physiology and pathophysiology of synaptic plasticity processes, which are tuned by scaffolding PSD proteins and their close related partners, through the modulation of receptor localization and distribution at post-synaptic sites. We suggest that, by regulating both the compartmentalization of receptors along surface membrane and their degradation as well as by modulating receptor trafficking into the PSD, postsynaptic scaffolding proteins may contribute to form distinct signaling micro-domains, whose efficacy in transmitting synaptic signals depends on the dynamic stability of the scaffold, which in turn is provided by relative amounts and post-translational modifications of scaffolding members. The putative relevance for neuropsychiatric diseases and possible pathophysiological mechanisms are discussed in the last part of this work.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2011

The acute and chronic effects of combined antipsychotic-mood stabilizing treatment on the expression of cortical and striatal postsynaptic density genes.

Carmine Tomasetti; Carmela Dell'aversano; Felice Iasevoli; Federica Marmo; Andrea de Bartolomeis

The detection of changes in postsynaptic gene expression after the administration of mood stabilizers, alone or in combination with antipsychotics, and antidepressants in animal models of drug treatment, may represent a valuable strategy to explore the molecular targets of the mainstay treatments for bipolar disorder. In this study we investigated, in both acute and chronic paradigms, the expression of specific postsynaptic density genes (Homer1a, Homer1b/c, and PSD95) and genes putatively implicated in mood stabilizers mechanism of action (GSK3b, ERK) after administration of first (haloperidol) or second generation antipsychotics (quetiapine 30 mg/kg), alone or in combination with valproate. Moreover, we compared the effects of an antidepressant agent widely used in bipolar depression (citalopram) with a low dose of quetiapine (15 mg/kg), which has been demonstrated to display antidepressant action in bipolar depression. In striatal regions, Homer1a expression was strongly induced by haloperidol compared to all the other treatments. Haloperidol plus valproate also markedly induced Homer1a, but to a significant lesser extent than haloperidol alone. Also in the chronic paradigm haloperidol, but not haloperidol plus valproate, induced Homer1a expression in all the subregions of the caudate-putamen and in the nucleus accumbens core. The high dose of quetiapine significantly induced Homer1a in anterior cingulated, premotor and motor subregions of the cortex, and the extent of induction was significantly higher as compared to the lower dose. Oppositely, Homer1a expression was decreased in the cortex by citalopram acute administration. ERK gene was upregulated in cortex and striatum by the acute treatment with valproate and with the combination of haloperidol or quetiapine plus valproate, whereas no significant differences were noticed in GSK3b expression among treatments. PSD95 showed a significant upregulation by acute citalopram and by haloperidol plus valproate in both cortical and subcortical regions. Haloperidol and quetiapine 30 mg/kg, oppositely, significantly reduced the expression of the gene in the cortex. In conclusion, these results suggest that the combined treatment with a typical or an atypical antipsychotic plus valproate may induce differential modulation of postsynaptic genes expression when compared to the effects of these drugs individually administered.


Psychopharmacology | 2010

Divergent acute and chronic modulation of glutamatergic postsynaptic density genes expression by the antipsychotics haloperidol and sertindole

Felice Iasevoli; Carmine Tomasetti; Federica Marmo; Daniele Bravi; Jørn Arnt; Andrea de Bartolomeis

RationaleA pivotal role for glutamate in the pathophysiology and treatment of schizophrenia has been suggested. Few reports have investigated the impact of antipsychotics on postsynaptic density (PSD) molecules involved in glutamatergic transmission and synaptic remodeling. Homer is a key PSD molecule putatively implicated in schizophrenia.ObjectivesWe studied the effect, in acute and chronic paradigms, of a first and a second generation antipsychotic (haloperidol and sertindole, respectively) on the expression of Homer1a and Homer-interacting PSD molecules.ResultsIn the acute paradigm, Homer1a expression was induced by haloperidol but not sertindole in the striatum, consistent with the less propensity of sertindole to affect nigrostriatal neurotransmission. The profile of expression of two other inducible genes, Ania3 and Arc, was highly similar to Homer1a. In the cortex, haloperidol reduced Homer1a and induced Ania3. In the chronic paradigm, striatal expression of Homer1a and Ania3 resembled that observed in the acute paradigm. In the cortex, haloperidol induced Homer1a, while sertindole did not. Homer1b expression was increased by haloperidol in the striatum and cortex whereas sertindole selectively induced Homer1b in the cortex. The expression of mGluR5 was increased by both antipsychotics. A modulation by haloperidol was also seen for PSD-95 and αCaMKII.ConclusionsThese results suggest that haloperidol and sertindole may significantly modulate glutamatergic transcripts of the postsynaptic density. Sertindole induces constitutive genes in the cortex predominantly, which may correlate with its propensity to improve cognitive functions. Haloperidol preferentially modulates gene expression in the striatum, consistent with its action at nigrostriatal projections and its propensity to give motor side effects.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2009

Dopamine receptor subtypes contribution to Homer1a induction: insights into antipsychotic molecular action.

Felice Iasevoli; Carmine Tomasetti; Alberto Ambesi-Impiombato; Giovanni Muscettola; Andrea de Bartolomeis

The inducible gene Homer1a has been considered a candidate gene for schizophrenia. Drugs efficacious in schizophrenia and acting as dopamine receptor antagonists induce Homer1a expression, although the specific role of the different dopamine receptors in its induction is not completely known. In this study, we explored Homer1a expression induced by selective antagonists at dopamine receptors (SCH-23390, D(1) receptor selective antagonist, 0.5 mg/kg; L-741,626, D(2) receptor selective antagonist, 2 mg/kg; U-99194, D(3) receptor selective antagonist, 5 mg/kg; L-745,870, D(4) receptor selective antagonist, 3 mg/kg), haloperidol (0.8 mg/kg), and terguride (0.5 mg/kg), a partial agonist at D(2) receptors. Moreover, we evaluated the expression of two Homer1a-related genes which play essential roles in synaptic plasticity: mGluR5 and Homer1b. Gene expression was analyzed in brain regions relevant for schizophrenia pathophysiology and therapy, namely the striatum, the cortex, and the hippocampus. In striatum, Homer1a was induced by D(2) receptor antagonists and, with a different distribution, by SCH-23390. In the cortex, Homer1a was differentially induced by D(1), D(2), and D(3) receptors antagonists, while haloperidol and terguride did not affect or reduced its expression. Homer1b expression was reduced by L-741,626, L-745,870, terguride, and haloperidol in the ventral caudate-putamen, in the nucleus accumbens and in the cortex, while SCH-23390 increased the expression in the core of the accumbens. mGluR5 expression was increased by SCH-23390 in the dorsomedial putamen, the core of the accumbens, and in some hippocampal subregions. A reduction of gene expression by terguride and an increase by L-745,870 was observed in the dorsomedial putamen. The changes in expression suggest that these gene transcripts are differentially regulated by antagonism at different dopamine receptors.


Current Pharmaceutical Design | 2013

The potential of pregabalin in neurology, psychiatry and addiction: a qualitative overview.

Giovanni Martinotti; M. Lupi; Fabiola Sarchione; Rita Santacroce; Anatolia Salone; Domenico De Berardis; Nicola Serroni; Marilde Cavuto; Maria Salvina Signorelli; Eugenio Aguglia; Alessandro Valchera; Felice Iasevoli; Massimo Di Giannantonio

Pregabalin is an anticonvulsant drug that binds to the α₂δ (alpha2delta) subunit of the voltage-dependent calcium channel in central nervous system (CNS). Pregabalin decreases the release of neurotransmitters, including glutamate, norepinephrine, substance P and calcitonin gene-related peptide. Purpose of this paper is to offer a qualitative overview of the studies currently available in literature about this drug, examining the effectiveness of pregabalin in its various fields of application. Our analysis, conducted on a final selection of 349 scientific papers, shows that pregabalin may help to reduce pain in diabetic neuropathy, in post-herpetic neuralgia and in some patients affected by fibromyalgia. It is also effective for the treatment of diverse types of seizures and has similar efficacy to benzodiazepines and venlafaxine in anxiety disorder. Moreover, pregabalin may be a therapeutic agent for the treatment of alcohol abuse, in both withdrawal phase and relapse prevention. Possible implications in the treatment of benzodiazepines dependence are emerging, but a potential abuse or misuse of the drug has also been reported. Range of dosage may fluctuate considerably, from 75 mg to 600 mg per day. Further studies are needed to completely understand pregabalin mechanism of action in the different diseases.

Collaboration


Dive into the Felice Iasevoli's collaboration.

Top Co-Authors

Avatar

Andrea de Bartolomeis

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Carmine Tomasetti

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabetta F. Buonaguro

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gianmarco Latte

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge