Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felicia A. Etzkorn is active.

Publication


Featured researches published by Felicia A. Etzkorn.


Nature Chemical Biology | 2012

Regulation of CK2 by phosphorylation and O-GlcNAcylation revealed by semisynthesis

Mary Katherine Tarrant; Hee Sool Rho; Zhi Xie; Yu Lin Jiang; Christopher Gross; Jeffrey C. Culhane; Gai Yan; Jiang Qian; Yoshitaka Ichikawa; Tatsuji Matsuoka; Natasha E. Zachara; Felicia A. Etzkorn; Gerald W. Hart; Jun Seop Jeong; Seth Blackshaw; Heng Zhu; Philip A. Cole

Protein Ser/Thr kinase CK2 (casein kinase II) is involved in a myriad of cellular processes including cell growth and proliferation by phosphorylating hundreds of substrates, yet the regulation process of CK2 function is poorly understood. Here we report that the CK2 catalytic subunit CK2α is modified by O-GlcNAc on Ser347, proximal to a cyclin-dependent kinase phosphorylation site (Thr344) on the same protein. We use protein semisynthesis to show that Thr344 phosphorylation increases CK2α cellular stability via Pin1 interaction whereas Ser347 glycosylation appears to be antagonistic to Thr344 phosphorylation and permissive to proteasomal degradation. By performing kinase assays with the site-specifically modified phospho- and glyco-modified CK2α in combination with CK2β and Pin1 binding partners on human protein microarrays, we show that CK2 kinase substrate selectivity is modulated by these specific posttranslational modifications. This study suggests how a promiscuous protein kinase can be regulated at multiple levels to achieve particular biological outputs.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Stereospecific gating of functional motions in Pin1

Andrew T. Namanja; Xiaodong J. Wang; Bailing Xu; Ana Y. Mercedes-Camacho; Kimberly A. Wilson; Felicia A. Etzkorn; Jeffrey W. Peng

Pin1 is a modular enzyme that accelerates the cis-trans isomerization of phosphorylated-Ser/Thr-Pro (pS/T-P) motifs found in numerous signaling proteins regulating cell growth and neuronal survival. We have used NMR to investigate the interaction of Pin1 with three related ligands that include a pS-P substrate peptide, and two pS-P substrate analogue inhibitors locked in the cis and trans conformations. Specifically, we compared the ligand binding modes and binding-induced changes in Pin1 side-chain flexibility. The cis and trans binding modes differ, and produce different mobility in Pin1. The cis-locked inhibitor and substrate produced a loss of side-chain flexibility along an internal conduit of conserved hydrophobic residues, connecting the domain interface with the isomerase active site. The trans-locked inhibitor produces a weaker conduit response. Thus, the conduit response is stereoselective. We further show interactions between the peptidyl-prolyl isomerase and Trp-Trp (WW) domains amplify the conduit response, and alter binding properties at the remote peptidyl-prolyl isomerase active site. These results suggest that specific input conformations can gate dynamic changes that support intraprotein communication. Such gating may help control the propagation of chemical signals by Pin1, and other modular signaling proteins.


Drug News & Perspectives | 2009

Pin1 as an anticancer drug target.

Guoyan G. Xu; Felicia A. Etzkorn

Pin1 specifically catalyzes the cis/trans isomerization of phospho-Ser/Thr-Pro bonds and plays an important role in many cellular events through the effects of conformational change on the function of its biological substrates, including cell division cycle 25 C (Cdc25C), c-Jun and p53. Pin1 is overexpressed in many human cancer tissues, including breast, prostate and lung cancer. Its expression correlates with cyclin D1 levels, which contribute to cell transformation. Overexpression of Pin1 promotes tumor growth, while inhibition of Pin1 causes tumor cell apoptosis. Pin1 plays an important role in oncogenesis and therefore may serve as an effective anticancer target. Many inhibitors of Pin1 have been discovered, including several classes of designed inhibitors (alkene isosteres, reduced amides, indanyl ketones) and natural products (juglone, pepticinnamin E analogues, PiB and its derivatives obtained from a library screen). Pin1 inhibitors could be used as a novel type of anticancer drug by blocking cell cycle progression. Therefore, Pin1 represents a new diagnostic and therapeutic anticancer drug target.


ACS Chemical Biology | 2012

Structural and Kinetic Analysis of Prolyl-isomerization/Phosphorylation Cross-Talk in the CTD Code.

Mengmeng Zhang; Xiaodong J. Wang; Xi Chen; Marianne E. Bowman; Yonghua Luo; Joseph P. Noel; Andrew D. Ellington; Felicia A. Etzkorn; Yan Zhang

The C-terminal domain (CTD) of eukaryotic RNA polymerase II is an essential regulator for RNA polymerase II-mediated transcription. It is composed of multiple repeats of a consensus sequence Tyr(1)Ser(2)Pro(3)Thr(4)Ser(5)Pro(6)Ser(7). CTD regulation of transcription is mediated by both phosphorylation of the serines and prolyl isomerization of the two prolines. Interestingly, the phosphorylation sites are typically close to prolines, and thus the conformation of the adjacent proline could impact the specificity of the corresponding kinases and phosphatases. Experimental evidence of cross-talk between these two regulatory mechanisms has been elusive. Pin1 is a highly conserved phosphorylation-specific peptidyl-prolyl isomerase (PPIase) that recognizes the phospho-Ser/Thr (pSer/Thr)-Pro motif with CTD as one of its primary substrates in vivo. In the present study, we provide structural snapshots and kinetic evidence that support the concept of cross-talk between prolyl isomerization and phosphorylation. We determined the structures of Pin1 bound with two substrate isosteres that mimic peptides containing pSer/Thr-Pro motifs in cis or trans conformations. The results unequivocally demonstrate the utility of both cis- and trans-locked alkene isosteres as close geometric mimics of peptides bound to a protein target. Building on this result, we identified a specific case in which Pin1 differentially affects the rate of dephosphorylation catalyzed by two phosphatases (Scp1 and Ssu72) that target the same serine residue in the CTD heptad repeat but have different preferences for the isomerization state of the adjacent proline residue. These data exemplify for the first time how modulation of proline isomerization can kinetically impact signal transduction in transcription regulation.


Journal of the American Chemical Society | 2009

Cis−Trans Proline Isomerization Effects on Collagen Triple-Helix Stability Are Limited

Nan Dai; Felicia A. Etzkorn

We investigated the effect of restricting cis-trans proline isomerization on collagen triple-helix stability. The Pro residues at the Xaa and Yaa positions of an (Xaa-Yaa-Gly) triplet were replaced by a Pro-trans-Pro alkene isostere in the host-guest peptide, H-(Pro-Pro-Gly)(10)-OH. The resulting alkene isostere peptide had a T(m) value 53.6 degrees C lower than that of the control peptide. The Pro-trans-Pro alkene isostere peptide had a T(m) value 3.9 degrees C higher than that of the previously reported Pro-trans-Gly alkene isostere peptide that did not involve cis-trans Pro isomerization (Jenkins, C. L.; Vasbinder, M. M.; Miller, S. J.; Raines, R. T. Org. Lett. 2005, 7, 2619-22). Thus, single cis-trans proline amide isomerization alone has limited contribution to the overall stability of the collagen triple helix. Since collagen has a high content of imino acid residues, the cumulative effects of cis-trans isomerization may be quite significant. The peptide containing the Pro-trans-Pro isostere was significantly less stable than the previously reported Gly-trans-Pro alkene isostere peptide that retained the backbone interchain hydrogen bond (Dai, N.; Wang, X. J.; Etzkorn, F. A. J. Am. Chem. Soc. 2008, 130, 5396-5397), which confirms that direct interchain backbone hydrogen bonding is a major force for stabilizing the collagen triple helix.


Journal of the American Chemical Society | 2010

Toward Flexibility−Activity Relationships by NMR Spectroscopy: Dynamics of Pin1 Ligands

Andrew T. Namanja; Xiaodong J. Wang; Bailing Xu; Ana Y. Mercedes-Camacho; Brian D. Wilson; Kimberly A. Wilson; Felicia A. Etzkorn; Jeffrey W. Peng

Drug design involves iterative ligand modifications. For flexible ligands, these modifications often entail restricting conformational flexibility. However, defining optimal restriction strategies can be challenging if the relationship between ligand flexibility and biological activity is unclear. Here, we describe an approach for ligand flexibility-activity studies using Nuclear Magnetic Resonance (NMR) spin relaxation. Specifically, we use (13)C relaxation dispersion measurements to compare site-specific changes in ligand flexibility for a series of related ligands that bind a common macromolecular receptor. The flexibility changes reflect conformational reorganization resulting from formation of the receptor-ligand complex. We demonstrate this approach on three structurally similar but flexibly differentiated ligands of human Pin1, a peptidyl-prolyl isomerase. The approach is able to map the ligand dynamics relevant for activity and expose changes in those dynamics caused by conformational locking. Thus, NMR flexibility-activity studies can provide information to guide strategic ligand rigidification. As such, they help establish an experimental basis for developing flexibility-activity relationships (FAR) to complement traditional structure-activity relationships (SAR) in molecular design.


Journal of the American Chemical Society | 2008

The Effect of a Trans-Locked Gly-Pro Alkene Isostere on Collagen Triple Helix Stability

Nan Dai; Xiaodong J. Wang; Felicia A. Etzkorn

An alkene isostere of Gly-trans-Pro was synthesized and incorporated into a host Ac-(Gly-Pro-Hyp)8-Gly-Gly-Tyr-NH2 peptide to investigate the effect of locking a proline amide bond. Proline amide bond isomerization is the slow step in collagen folding. By locking the amide, we hypothesized an increase in stability of the collagen triple helix. The substitution instead destabilized the collagen host peptide. The Tm value of the host control peptide was 50.0 degrees C, while the peptide containing the isostere, Ac-(Gly-Pro-Hyp)3-Gly-psi[(E)CH C]-Pro-Hyp-(Gly-Pro-Hyp)4-Gly-Gly-Tyr-NH2, had a Tm value of 28.3 degrees C. There are clearly factors that contribute to collagen stability and folding that we do not yet understand.


Cell | 2013

A Prolyl-isomerase Mediates Dopamine-dependent Plasticity and Cocaine Motor Sensitization

Joo Min Park; Jia Hua Hu; Aleksandr Milshteyn; Ping Wu Zhang; Chester G. Moore; Sungjin Park; Michael C. Datko; Racquel D. Domingo; Cindy M. Reyes; Xiaodong J. Wang; Felicia A. Etzkorn; Bo Xiao; Karen K. Szumlinski; Dorothee Kern; David J. Linden; Paul F. Worley

Synaptic plasticity induced by cocaine and other drugs underlies addiction. Here we elucidate molecular events at synapses that cause this plasticity and the resulting behavioral response to cocaine in mice. In response to D1-dopamine-receptor signaling that is induced by drug administration, the glutamate-receptor protein metabotropic glutamate receptor 5 (mGluR5) is phosphorylated by microtubule-associated protein kinase (MAPK), which we show potentiates Pin1-mediated prolyl-isomerization of mGluR5 in instances where the product of an activity-dependent gene, Homer1a, is present to enable Pin1-mGluR5 interaction. These biochemical events potentiate N-methyl-D-aspartate receptor (NMDAR)-mediated currents that underlie synaptic plasticity and cocaine-evoked motor sensitization as tested in mice with relevant mutations. The findings elucidate how a coincidence of signals from the nucleus and the synapse can render mGluR5 accessible to activation with consequences for drug-induced dopamine responses and point to depotentiation at corticostriatal synapses as a possible therapeutic target for treating addiction.


Organic Letters | 2010

Convergent Synthesis of α-Ketoamide Inhibitors of Pin1

Guoyan G. Xu; Felicia A. Etzkorn

A convergent synthesis of alpha-ketoamide inhibitors of Pin1 is described. An alpha-hydroxyorthothioester derivative of Ser was reacted directly with an amine synthon. The reaction was catalyzed by HgO and HgCl(2) to form alpha-hydroxyamide. Thus, hydrolysis and coupling were combined in one step with 80% yield. Two diastereomers of a phospho-Ser-Pro alpha-ketoamide analogue were synthesized. The IC(50) values of 100 and 200 microM were surprisingly weak for Pin1 peptidyl prolyl isomerase.


Biochemistry | 2011

A reduced-amide inhibitor of pin1 binds in a conformation resembling a twisted-amide transition state

Guoyan G. Xu; Yan Zhang; Ana Y. Mercedes-Camacho; Felicia A. Etzkorn

The mechanism of the cell cycle regulatory peptidyl prolyl isomerase (PPIase), Pin1, was investigated using reduced-amide inhibitors designed to mimic the twisted-amide transition state. Inhibitors, R-pSer-Ψ[CH(2)N]-Pro-2-(indol-3-yl)ethylamine, 1 [R = fluorenylmethoxycarbonyl (Fmoc)] and 2 (R = Ac), of Pin1 were synthesized and bioassayed. Inhibitor 1 had an IC(50) value of 6.3 μM, which is 4.5-fold better for Pin1 than our comparable ground-state analogue, a cis-amide alkene isostere-containing inhibitor. The change of Fmoc to Ac in 2 improved aqueous solubility for structural determination and resulted in an IC(50) value of 12 μM. The X-ray structure of the complex of 2 bound to Pin1 was determined to 1.76 Å resolution. The structure revealed that the reduced amide adopted a conformation similar to the proposed twisted-amide transition state of Pin1, with a trans-pyrrolidine conformation of the prolyl ring. A similar conformation of substrate would be destabilized relative to the planar amide conformation. Three additional reduced amides, with Thr replacing Ser and l- or d-pipecolate (Pip) replacing Pro, were slightly weaker inhibitors of Pin1.

Collaboration


Dive into the Felicia A. Etzkorn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Zhang

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janusz Zabrocki

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Krzysztof Kaczmarek

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Mengmeng Zhang

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Ronald J. Nachman

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge