Felicia Sáez
Complutense University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Felicia Sáez.
Applied Biochemistry and Biotechnology | 2003
José Miguel Oliva; Felicia Sáez; Ignacio Ballesteros; Alberto González; María José Negro; Paloma Manzanares; Mercedes Ballesteros
The filtrate from steam-pretreated poplar was analyzed to identify degradation compounds. The effect of selected compounds on growth and ethanolic fermentation of the thermotolerant yeast strain Kluyveromyces marxianus CECT 10875 was tested. Several fermentations on glucose medium, containing individual inhibitory compounds found in the hydrolysate, were carried out. The degree of inhibition on yeast strain growth and ethanolic fermentation was determined. At concentrations found in the prehy-drolysate, none of the individual compounds significantly affected the fermentation. For all tested compounds, growth was inhibited to a lesser extent than ethanol production. Lower concentrations of catechol (0.96 g/L) and 4-hydroxybenzaldehyde (1.02 g/L) were required to produce the 50% reduction in cell mass in comparison to other tested compounds.
Applied Biochemistry and Biotechnology | 1991
Ignacio Ballesteros; Mercedes Ballesteros; A. CabaÑas; J. Carrasco; C. MartÍn; M.J. Negro; Felicia Sáez; R. Saez
AbstractA total of 27 yeast strains belonging to the groupsCandida, Saccharomyces, andKluyveromyces were screened for their ability to grow and ferment glucose at temperatures ranging 32-45°C. K. marxianus andK. fragilis were found to be the best ethanol producing organisms at the higher temperature tested and, so, were selected for subsequent simultaneous saccharification and fermentation (SSF) studies.SSF experiments were performed at 42 and 45°C, utilizing Solkafloc (10%) as cellulose substrate and a cellulase loading of 15 FPU/g substrate. Best results were achieved at 42°C withK. marxianus L. G. andK. fragilis L. G., both of which produced close to 38g/L ethanol and 0.5 ethanol yield, in 78 h.
Applied Biochemistry and Biotechnology | 2007
Cristóbal Cara; Inmaculada Romero; José Miguel Oliva; Felicia Sáez; Eulogio Castro
Olive tree pruning generates an abundant, renewable lignocellulose residue, which is usually burnt on fields to prevent propagation of vegetal diseases, causing economic costs and environmental concerns. As a first step in an alternative use to produce fuel ethanol, this work is aimed to study the pretreatment of olive tree pruning residues by liquid hot water. Pretreatment was carried out at seven temperature levels in the range 170–230°C for 10 or 60 min. Sugar recoveries in both solid and liquid fractions resulting from pretreatment as well as enzymatic hydrolysis yield of the solid were used to evaluate pretreatment performance. Results show that the enzyme accessibility of cellulose in the pretreated solid fraction increased with pretreatment time and temperature, although sugar degradation in the liquid fraction was concomitantly higher.
Biotechnology Progress | 2013
Pablo Alvira; Antonio D. Moreno; David Ibarra; Felicia Sáez; Mercedes Ballesteros
Operating the saccharification and fermentation processes at high‐substrate loadings is a key factor for making ethanol production from lignocellulosic biomass economically viable. However, increasing the substrate loading presents some disadvantages, including a higher concentration of inhibitors (furan derivatives, weak acids, and phenolic compounds) in the media, which negatively affect the fermentation performance. One strategy to eliminate soluble inhibitors is filtering and washing the pretreated material. In this study, it was observed that even if the material was previously washed, inhibitory compounds were released during the enzymatic hydrolysis step. Laccase enzymatic treatment was evaluated as a method to reduce these inhibitory effects. The laccase efficiency was analyzed in a presaccharification and simultaneous saccharification and fermentation process at high‐substrate loadings. Water‐insoluble solids fraction from steam‐exploded wheat straw was used as substrate and Saccharomyces cerevisiae as fermenting microorganism. Laccase supplementation reduced strongly the phenolic content in the media, without affecting weak acids and furan derivatives. This strategy resulted in an improved yeast performance during simultaneous saccharification and fermentation process, increasing significantly ethanol productivity.
Applied Biochemistry and Biotechnology | 2001
Ignacio Ballesteros; José Miguel Oliva; Felicia Sáez; Mercedes Ballesteros
The recent implementation of a new two-step centrifugation process for extracting olive oil in Spain has substantially reduced water consumption, thereby eliminating oil mill wastewater. However, a new high sugar content residue is still generated. In this work the two fractions present in the residue (olive pulp and fragm ented stones) were assayed as substrate for ethanol production by the simultaneous saccharification and fermentation (SSF) process. Pretreatment of fragmented olive stones by sulfuric acid-catalyzed steam explosion was the most effective treatment for increasing enzymatic digestibility; however, a pretreatment step was not necessary to bioconvert the olive pulp into ethanol. Theolive pulp and fragmented olive stones were tested by the SSF process using a fed-batch procedure. By adding the pulp three times at 24-h intervals, 76% of the theoretical SSF yield was obtained. Experiments with fed-batch pretreated olive stones provided SSF yields significantly lower than those obtained at standard SSF procedure. The preferred SSF conditions to obtain ethanol from olives stones (61% of theoretical yield) were 10% substrate and addition of cellulases at 15 filter paper units/g of substrate.
Bioresource Technology | 2011
Ignacio Ballesteros; Mercedes Ballesteros; Cristóbal Cara; Felicia Sáez; Eulogio Castro; Paloma Manzanares; M.J. Negro; José Miguel Oliva
Biomass of olive tree pruning can be considered a suitable raw material for the production of ethanol due to its high content of potentially fermentable carbohydrates. However its high extractives content could cause condensation reactions between extractives and acid insoluble lignin during pretreatment, hindering the enzymatic hydrolysis of pretreated material. In this work, the effect of extractives removal before steam explosion of olive tree pruning was evaluated. The objectives are to recover as much glucose as possible in the extraction stage and to avoid the condensation reactions. The effect of temperature and time of water extracted material on sugars recovery was studied using a response surface method according to a central composite design. Extractive removal previous to steam explosion resulted in 20% more total sugars recovery in comparison to a material without water extraction stage.
Applied Biochemistry and Biotechnology | 2007
Mercedes Ballesteros; M. José Negro; Paloma Manzanares; Ignacio Ballesteros; Felicia Sáez; J. Miguel Oliva
Cynara cardunculus L. (cardoon) is a Mediterranean perennial herb offering good potential as substrate for sustainable production of bioethanol. In this work the first approach to the study of dilute-acid pretreatment of cardoon biomass for biological conversion was made. The influence of temperature (160–200°C), acid concentration (0–0.2% [w/w]), and solid concentration (5–10% [w/v]) in the formation of free sugars and sugar decomposition products in the prehydrolyzate was studied using a response surface methodology. Results show a negative interaction effect between acid concentration and temperature in xylose recovery yield in prehydrolyzate, whereas dry matter concentration does not exert a significant effect. Xylose recovery yield reaches a maximum of about 80% of the content in dry untreated raw material at 180°C and 0.1 or 0.2% acid addition. At these conditions the ratio of monomers found in prehydrolyzate in relation to total sugar yield for xylose is close to 100%. Furfural concentration, the major furan determined in the prehydrolyzate, increases as pretreatment severity rises. Maximum furfural yield of 4.2 g/100 g dry untreated raw material was found at 200°C and 0.2% acid concentration. The yield of furfural at the conditions in which maximum xylose recovery is attained is substantially lower, less than 2 g/100 g dry untreated raw material. This fact supports the idea of using moderate temperatures in dilute-acid processes, which at the same time provides reasonably high sugar recovery yield and avoids high inhibitory products formation.
Archive | 2006
M.J. Negro; Ignacio Ballesteros; Paloma Manzanares; José Miguel Oliva; Felicia Sáez; Mercedes Ballesteros
The use of stalks instead of tubers as a source of carbohydrates for ethanol production has been investigated. The inulin present in the stalks of Jerusalem artichoke was extracted with water and the effect of solid-liquid ratio, temperature, and acid addition was studied and optimized in order to attain a high-fructose fermentable extract. The maximum extraction efficiency (corresponding to 35 g/L) of soluble sugars was obtained at 1/6 solidliquid ratio.Fermentations of hydrolyzed extracts by bakers yeast and direct fermentation by an inulinease activity yeast were also performed and the potential to use this feedstock for bioethanol production assessed. The results show that the carbohydrates derived from Jerusalem artichoke stalks can be converted efficiently to ethanol by acidic hydrolysis followed by fermentation with Saccharomyces cerevisiae or by direct fermentation of inulin using Kluyveromyces marxianus strains. In this last case about 30 h to complete fermentation was required in comparison with 8–9 h obtained in experiments with S. cerevisiae growth on acid extracted juices.
Applied Biochemistry and Biotechnology | 2006
M.J. Negro; Ignacio Ballesteros; Paloma Manzanares; José Miguel Oliva; Felicia Sáez; Mercedes Ballesteros
The use of stalks instead of tubers as a source of carbohydrates for ethanol production has been investigated. The inulin present in the stalks of Jerusalem artichoke was extracted with water and the effect of solid-liquid ratio, temperature, and acid addition was studied and optimized in order to attain a high-fructose fermentable extract. The maximum extraction efficiency (corresponding to 35 g/L) of soluble sugars was obtained at 1/6 solidliquid ratio.Fermentations of hydrolyzed extracts by bakers yeast and direct fermentation by an inulinease activity yeast were also performed and the potential to use this feedstock for bioethanol production assessed. The results show that the carbohydrates derived from Jerusalem artichoke stalks can be converted efficiently to ethanol by acidic hydrolysis followed by fermentation with Saccharomyces cerevisiae or by direct fermentation of inulin using Kluyveromyces marxianus strains. In this last case about 30 h to complete fermentation was required in comparison with 8–9 h obtained in experiments with S. cerevisiae growth on acid extracted juices.
Bioresource Technology | 2018
Adriana Paola Manfredi; Ignacio Ballesteros; Felicia Sáez; Nora Inés Perotti; María Alejandra Martínez; María José Negro
This work focuses a whole process assessment on post-harvesting sugarcane residues for 2G ethanol production by different saccharification-fermentation conditions at high solids loading, performed after steam explosion, alkaline and acidic pretreatments. Carbohydrate recoveries and enzymatic digestibility results showed that alkali and steam explosion pretreatments were effective for the biomass assayed. Due to a significant improvement (60%) of the glucose released by combining hemicellulases and cellulases only after the NaOH pretreatment, the most favorable process settled comprised an alkali-based pretreatment followed by a pre-saccharification and simultaneous saccharification and fermentation (PSSF). The produced ethanol reached 4.8% (w/w) as a result of an 80% conversion of the glucose from the pretreated biomass. Finally, an ethanol concentration of 3.2% (w/w) was obtained by means of a steam explosion followed by PSSF, representing a suitable start point to further develop a low environmental impact alternative for ethanol production.