Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felipe A. Court is active.

Publication


Featured researches published by Felipe A. Court.


Genes & Development | 2009

XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy

Claudio Hetz; Peter Thielen; Soledad Matus; Melissa Nassif; Felipe A. Court; Roberta Kiffin; Gabriela Martínez; Ana Maria Cuervo; Robert H. Brown; Laurie H. Glimcher

Mutations in superoxide dismutase-1 (SOD1) cause familial amyotrophic lateral sclerosis (fALS). Recent evidence implicates adaptive responses to endoplasmic reticulum (ER) stress in the disease process via a pathway known as the unfolded protein response (UPR). Here, we investigated the contribution to fALS of X-box-binding protein-1 (XBP-1), a key UPR transcription factor that regulates genes involved in protein folding and quality control. Despite expectations that XBP-1 deficiency would enhance the pathogenesis of mutant SOD1, we observed a dramatic decrease in its toxicity due to an enhanced clearance of mutant SOD1 aggregates by macroautophagy, a cellular pathway involved in lysosome-mediated protein degradation. To validate these observations in vivo, we generated mutant SOD1 transgenic mice with specific deletion of XBP-1 in the nervous system. XBP-1-deficient mice were more resistant to developing disease, correlating with increased levels of autophagy in motoneurons and reduced accumulation of mutant SOD1 aggregates in the spinal cord. Post-mortem spinal cord samples from patients with sporadic ALS and fALS displayed a marked activation of both the UPR and autophagy. Our results reveal a new function of XBP-1 in the control of autophagy and indicate critical cross-talk between these two signaling pathways that can provide protection against neurodegeneration.


Journal of extracellular vesicles | 2015

Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper.

Thomas Lener; Mario Gimona; Ludwig Aigner; Verena Börger; Edit I. Buzás; Giovanni Camussi; Nathalie Chaput; Devasis Chatterjee; Felipe A. Court; Hernando A. del Portillo; Lorraine O'Driscoll; Stefano Fais; Juan M. Falcon-Perez; Ursula Felderhoff-Mueser; Lorenzo Fraile; Yong Song Gho; André Görgens; Ramesh C. Gupta; An Hendrix; Dirk M. Hermann; Andrew F. Hill; Fred H. Hochberg; Peter A. Horn; Dominique P.V. de Kleijn; Lambros Kordelas; Boris W. Kramer; Eva Maria Krämer-Albers; Sandra Laner-Plamberger; Saara Laitinen; Tommaso Leonardi

Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.


Autophagy | 2013

Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons

Karen Castillo; Melissa Nassif; Vicente Valenzuela; Fabiola Rojas; Soledad Matus; Gabriela Mercado; Felipe A. Court; Brigitte van Zundert; Claudio Hetz

Amyotrophic lateral sclerosis (ALS) is a fatal motoneuron disease with no current effective treatment. Accumulation of abnormal protein inclusions containing SOD1, TARDBP, FUS, among other proteins, is a pathological hallmark of ALS. Autophagy is the major degradation pathway involved in the clearance of damaged organelles and protein aggregates. Although autophagy has been shown to efficiently degrade ALS-linked mutant protein in cell culture models, several studies suggest that autophagy impairment may also contribute to disease pathogenesis. In this report, we tested the potential use of trehalose, a disaccharide that induces MTOR-independent autophagy, in the development of experimental ALS. Administration of trehalose to mutant SOD1 transgenic mice significantly prolonged life span and attenuated the progression of disease signs. These effects were associated with decreased accumulation of SOD1 aggregates and enhanced motoneuron survival. The protective effects of trehalose were associated with increased autophagy levels in motoneurons. Cell culture experiments demonstrated that trehalose led to mutant SOD1 degradation by autophagy in NSC34 motoneuron cells and also protected primary motoneurons against the toxicity of conditioned media from mutant SOD1 transgenic astrocytes. At the mechanistic level, trehalose treatment led to a significant upregulation in the expression of key autophagy-related genes at the mRNA level including Lc3, Becn1, Sqstm1 and Atg5. Consistent with these changes, trehalose administration enhanced the nuclear translocation of FOXO1, an important transcription factor involved in the activation of autophagy in neurons. This study suggests a potential use of trehalose and enhancers of MTOR-independent autophagy for the treatment of ALS.


The Journal of Neuroscience | 2011

Axonal Degeneration Is Mediated by the Mitochondrial Permeability Transition Pore

Sebastian A. Barrientos; Nicolás Martínez; Soonmoon Yoo; Juan S. Jara; Sebastian Zamorano; Claudio Hetz; Jeffery L. Twiss; Jaime Alvarez; Felipe A. Court

Axonal degeneration is an active process that has been associated with neurodegenerative conditions triggered by mechanical, metabolic, infectious, toxic, hereditary and inflammatory stimuli. This degenerative process can cause permanent loss of function, so it represents a focus for neuroprotective strategies. Several signaling pathways are implicated in axonal degeneration, but identification of an integrative mechanism for this self-destructive process has remained elusive. Here, we show that rapid axonal degeneration triggered by distinct mechanical and toxic insults is dependent on the activation of the mitochondrial permeability transition pore (mPTP). Both pharmacological and genetic targeting of cyclophilin D, a functional component of the mPTP, protects severed axons and vincristine-treated neurons from axonal degeneration in ex vivo and in vitro mouse and rat model systems. These effects were observed in axons from both the peripheral and central nervous system. Our results suggest that the mPTP is a key effector of axonal degeneration, upon which several independent signaling pathways converge. Since axonal and synapse degeneration are increasingly considered early pathological events in neurodegeneration, our work identifies a potential target for therapeutic intervention in a wide variety of conditions that lead to loss of axons and subsequent functional impairment.


Human Molecular Genetics | 2012

Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy

René L. Vidal; Alicia Figueroa; Felipe A. Court; Peter Thielen; Claudia Molina; Craig Wirth; Benjamin Caballero; Roberta Kiffin; Juan Segura-Aguilar; Ana Maria Cuervo; Laurie H. Glimcher; Claudio Hetz

Mutations leading to expansion of a poly-glutamine track in Huntingtin (Htt) cause Huntingtons disease (HD). Signs of endoplasmic reticulum (ER) stress have been recently reported in animal models of HD, associated with the activation of the unfolded protein response (UPR). Here we have investigated the functional contribution of ER stress to HD by targeting the expression of two main UPR transcription factors, XBP1 and ATF4 (activating transcription factor 4), in full-length mutant Huntingtin (mHtt) transgenic mice. XBP1-deficient mice were more resistant to developing disease features, associated with improved neuronal survival and motor performance, and a drastic decrease in mHtt levels. The protective effects of XBP1 deficiency were associated with enhanced macroautophagy in both cellular and animal models of HD. In contrast, ATF4 deficiency did not alter mHtt levels. Although, XBP1 mRNA splicing was observed in the striatum of HD transgenic brains, no changes in the levels of classical ER stress markers were detected in symptomatic animals. At the mechanistic level, we observed that XBP1 deficiency led to augmented expression of Forkhead box O1 (FoxO1), a key transcription factor regulating autophagy in neurons. In agreement with this finding, ectopic expression of FoxO1 enhanced autophagy and mHtt clearance in vitro. Our results provide strong evidence supporting an involvement of XBP1 in HD pathogenesis probably due to an ER stress-independent mechanism involving the control of FoxO1 and autophagy levels.


Journal of Cell Biology | 2007

β1 integrin activates Rac1 in Schwann cells to generate radial lamellae during axonal sorting and myelination

Alessandro Nodari; Desirée Zambroni; Angelo Quattrini; Felipe A. Court; Alessandra D'Urso; Victor L. J. Tybulewicz; Lawrence Wrabetz; M. Laura Feltri

Myelin is a multispiraled extension of glial membrane that surrounds axons. How glia extend a surface many-fold larger than their body is poorly understood. Schwann cells are peripheral glia and insert radial cytoplasmic extensions into bundles of axons to sort, ensheath, and myelinate them. Laminins and β1 integrins are required for axonal sorting, but the downstream signals are largely unknown. We show that Schwann cells devoid of β1 integrin migrate to and elongate on axons but cannot extend radial lamellae of cytoplasm, similar to cells with low Rac1 activation. Accordingly, active Rac1 is decreased in β1 integrin–null nerves, inhibiting Rac1 activity decreases radial lamellae in Schwann cells, and ablating Rac1 in Schwann cells of transgenic mice delays axonal sorting and impairs myelination. Finally, expressing active Rac1 in β1 integrin–null nerves improves sorting. Thus, increased activation of Rac1 by β1 integrins allows Schwann cells to switch from migration/elongation to the extension of radial membranes required for axonal sorting and myelination.


The Journal of Neuroscience | 2008

Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system.

Felipe A. Court; William T. Hendriks; Harold D. MacGillavry; Jaime Alvarez; Jan van Minnen

Schwann cells play pivotal roles in the development and maintenance of the peripheral nervous system. Here, we show that intact sciatic nerve axons of mice contain a small population of ribosomes, which increases by several orders of magnitude when axons are desomatized (severed from their cell bodies). We furthermore demonstrate, using the Wallerian degeneration slow mouse as a model, that Schwann cells transfer polyribosomes to desomatized axons. These data indicate that Schwann cells have the propensity to control axonal protein synthesis by supplying ribosomes on local basis.


Trends in Neurosciences | 2012

Mitochondria as a central sensor for axonal degenerative stimuli

Felipe A. Court; Michael P. Coleman

Axonal degeneration is a major contributor to neuronal dysfunction in many neurological conditions and has additional roles in development. It can be triggered by divergent stimuli including mechanical, metabolic, infectious, toxic, hereditary and inflammatory stresses. Axonal mitochondria are an important convergence point as regulators of bioenergetic metabolism, reactive oxygen species (ROS), Ca²⁺ homeostasis and protease activation. The challenges likely to render axonal mitochondria more vulnerable than their cellular counterparts are reviewed, including axonal transport, replenishing nuclear-encoded proteins and maintenance of quality control, fusion and fission in locations remote from the cell body. The potential for mitochondria to act as a decision node in axon loss is considered, highlighting the need to understand the biology of axonal mitochondria and their contributions to degenerative mechanisms for novel therapeutic strategies.


Glia | 2013

Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system

Mar ıa Alejandra Lopez-Verrilli; Frederic Picou; Felipe A. Court

Axonal regeneration in the peripheral nervous system is greatly supported by Schwann cells (SCs). After nerve injury, SCs dedifferentiate to a progenitor‐like state and efficiently guide axons to their original target tissues. Contact and soluble factors participate in the crosstalk between SCs and axons during axonal regeneration. Here we show that dedifferentiated SCs secrete nano‐vesicles known as exosomes which are specifically internalized by axons. Surprisingly, SC‐derived exosomes markedly increase axonal regeneration in vitro and enhance regeneration after sciatic nerve injury in vivo. Exosomes shift the growth cone morphology to a pro‐regenerating phenotype and decrease the activity of the GTPase RhoA, involved in growth cone collapse and axon retraction. Altogether, our work identifies a novel mechanism by which SCs communicate with neighboring axons during regenerative processes. We propose that SC exosomes represent an important mechanism by which these cells locally support axonal maintenance and regeneration after nerve damage. GLIA 2013;61:1795–1806


The Journal of Neuroscience | 2014

Emerging Roles of Extracellular Vesicles in the Nervous System

Lawrence Rajendran; Bali J; Maureen M. Barr; Felipe A. Court; Eva-Maria Krämer-Albers; Picou F; Graça Raposo; van der Vos Ke; van Niel G; Jianfeng Wang; Xandra O. Breakefield

Information exchange executed by extracellular vesicles, including exosomes, is a newly described form of intercellular communication important in the development and physiology of neural systems. These vesicles can be released from cells, are packed with information including signaling proteins and both coding and regulatory RNAs, and can be taken up by target cells, thereby facilitating the transfer of multilevel information. Recent studies demonstrate their critical role in physiological processes, including nerve regeneration, synaptic function, and behavior. These vesicles also have a sinister role in the propagation of toxic amyloid proteins in neurodegenerative conditions, including prion diseases and Alzheimers and Parkinsons diseases, in inducing neuroinflammation by exchange of information between the neurons and glia, as well as in aiding tumor progression in the brain by subversion of normal cells. This article provides a summary of topics covered in a symposium and is not meant to be a comprehensive review of the subject.

Collaboration


Dive into the Felipe A. Court's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaime Alvarez

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge