Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felipe A. Dias is active.

Publication


Featured researches published by Felipe A. Dias.


PLOS Pathogens | 2011

Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota

Jose Henrique M. Oliveira; Renata L. S. Gonçalves; Flávio Alves Lara; Felipe A. Dias; Ana Caroline P. Gandara; Rubem F. S. Menna-Barreto; Meredith C. Edwards; Francisco R.M. Laurindo; Mário A.C. Silva-Neto; Marcos Henrique Ferreira Sorgine; Pedro L. Oliveira

The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme.


Applied and Environmental Microbiology | 2013

Bacterial Community Response to Petroleum Hydrocarbon Amendments in Freshwater, Marine, and Hypersaline Water-Containing Microcosms

Diogo Jurelevicius; Vanessa Marques Alvarez; Joana Montezano Marques; Laryssa Ribeiro Fonseca de Sousa Lima; Felipe A. Dias; Lucy Seldin

ABSTRACT Hydrocarbon-degrading bacterial communities from freshwater, marine, and hypersaline Brazilian aquatic ecosystems (with water salinities corresponding to 0.2%, 4%, and 5%, respectively) were enriched with different hydrocarbons (heptadecane, naphthalene, or crude oil). Changes within the different microcosms of bacterial communities were analyzed using cultivation approaches and molecular methods (DNA and RNA extraction, followed by genetic fingerprinting and analyses of clone libraries based on the 16S rRNA-coding gene). A redundancy analysis (RDA) of the genetic fingerprint data and a principal component analysis (PCA) of the clone libraries revealed hydrocarbon-enriched bacterial communities specific for each ecosystem studied. However, within the same ecosystem, different bacterial communities were selected according to the petroleum hydrocarbon used. In general, the results demonstrated that Acinetobacter and Cloacibacterium were the dominant genera in freshwater microcosms; the Oceanospirillales order and the Marinobacter, Pseudomonas, and Cycloclasticus genera predominated in marine microcosms; and the Oceanospirillales order and the Marinobacter genus were selected in the different hydrocarbon-containing microcosms in hypersaline water. Determination of total petroleum hydrocarbons (TPHs) in all microcosms after 32 days of incubation showed a decrease in the hydrocarbon concentration compared to that for the controls. A total of 50 (41.3%) isolates from the different hydrocarbon-contaminated microcosms were associated with the dominant operational taxonomic units (OTUs) obtained from the clone libraries, and their growth in the hydrocarbon contaminating the microcosm from which they were isolated as the sole carbon source was observed. These data provide insight into the general response of bacterial communities from freshwater, marine, and hypersaline aquatic ecosystems to petroleum hydrocarbon contamination.


Frontiers in Microbiology | 2012

Conventional Therapy and Promising Plant-Derived Compounds Against Trypanosomatid Parasites

Daniela Sales Alviano; Anna Léa Silva Barreto; Felipe A. Dias; Igor A. Rodrigues; Maria do Socorro S. Rosa; Celuta Sales Alviano; Rosangela Maria de Araújo Soares

Leishmaniasis and trypanosomiasis are two neglected and potentially lethal diseases that affect mostly the poor and marginal populations of developing countries around the world and consequently have an important impact on public health. Clinical manifestations such as cutaneous, mucocutaneous, and visceral disorders are the most frequent forms of leishmaniasis, a group of diseases caused by several Leishmania spp. American trypanosomiasis, or Chagas disease, is caused by Trypanosoma cruzi, a parasite that causes progressive damage to different organs, particularly the heart, esophagus, and lower intestine. African trypanosomiasis, or sleeping sickness, is caused by Trypanosoma brucei and is characterized by first presenting as an acute form that affects blood clotting and then becoming a chronic meningoencephalitis. The limited number, low efficacy, and side effects of conventional anti-leishmania and anti-trypanosomal drugs and the resistance developed by parasites are the major factors responsible for the growth in mortality rates. Recent research focused on plants has shown an ingenious way to obtain a solid and potentially rich source of drug candidates against various infectious diseases. Bioactive phytocompounds present in the crude extracts and essential oils of medicinal plants are components of an important strategy linked to the discovery of new medicines. These compounds have proven to be a good source of therapeutic agents for the treatment of leishmaniasis and trypanosomiasis. This work highlights some chemotherapeutic agents while emphasizing the importance of plants as a source of new and powerful drugs against these widespread diseases.


Phytopathology | 2001

Secreted Phosphatase Activities in Trypanosomatid Parasites of Plants Modulated by Platelet-Activating Factor

Patrícia Maria Lourenço Dutra; Felipe A. Dias; M. A. A. Santos; Claudia O. Rodrigues; Alexandre Romeiro; M. Attias; W. de Souza; Angela H. Lopes; José Roberto Meyer-Fernandes

ABSTRACT The secreted phosphatase activities of two trypanosomatid parasites were characterized and compared with supernatants of living cells. The plant parasite Phytomonas françai and the phytophagous hemipteran parasite Herpetomonas sp. hydrolyzed p-nitrophenylphosphate at a rate of 15.54 and 6.51 nmol Pi/mg of protein per min, respectively. Sodium orthovanadate (N(a)VO(3)) and sodium fluoride (NaF) decreased the phosphatase activities. The phosphatase activity of P. françai was drastically diminished (73% inhibition) in the presence of sodium tartrate, whereas the phosphatase activity of Herpetomonas sp. was inhibited by 23%. Cytochemical analysis showed the localization of these enzymes on the external surface and in the flagellar pocket of the two trypanosomatids. Sodium tartrate inhibited this reaction, confirming the biochemical data. Platelet-activating factor modulated the phosphatase activities, inhibiting P. françai activity and stimulating Herpetomonas sp. phosphatase activity.


Phytopathology | 2000

Characterization of ectophosphatase activities in trypanosomatid parasites of plants.

Patrícia Maria Lourenço Dutra; Claudia O. Rodrigues; Alexandre Romeiro; L. A. M. Grillo; Felipe A. Dias; M. Attias; W. de Souza; Angela H. Lopes; José Roberto Meyer-Fernandes

ABSTRACT In the present work ectophosphatase activities of three trypanosomatid parasites of plants were characterized using intact cells. Phytomonas françai, Phytomonas mcgheei, and Herpetomonas sp. hydrolyzed p-nitro-phenylphosphate at a rate of 5.40, 7.28, and 25.58 nmol Pi/mg of protein per min, respectively. Experiments using classical inhibitors of acid phosphatases such as sodium orthovanadate (NaVO(3)) and sodium fluoride (NaF) showed a decrease in phosphatase activities. Lithium fluoride (LiF) and aluminum chloride (AlCl(3)) were also used. Although AlCl3 had no effect, LiF was able to promote a decrease in the phosphatase activities. Interestingly, the inhibition caused by LiF was enhanced by the addition of AlCl3 during the reaction, probably due to the formation of fluoroaluminate complexes. This effect was confirmed by cytochemical analysis. In this assay, electron-dense cerium phosphate deposits were visualized on the external surface of the three parasites.


Current Microbiology | 2001

Platelet-activating factor modulates a secreted phosphatase activity of the trypanosomatid parasite Herpetomonas muscarum muscarum.

Patrícia Maria Lourenço Dutra; Felipe A. Dias; Claudia O. Rodrigues; Alexandre Romeiro; Marcia Attias; Wanderley de Souza; Angela H. Lopes; José Roberto Meyer-Fernandes

In the present work we characterized the secreted phosphatase activity of the trypanosomatid parasite Herpetomonas muscarum muscarum. This housefly parasite hydrolyzed p-nitrophenylphosphate at a rate of 10.26 nmol Pi/mg protein/min. Classical inhibitors of acid phosphatases, such as sodium orthovanadate (NaVO3), sodium fluoride (NaF), and ammonium molybdate promoted a decrease in this phosphatase activity. When the parasites were assayed in the presence of sodium tartrate, an inhibitor of Leishmania spp-secreted acid phosphatases, this activity was drastically diminished. Cytochemical analysis showed the localization of this enzyme on the external surface and in the flagellar pocket of these parasites. Sodium tartrate inhibited this reaction, confirming the biochemical data. Platelet-activating factor (PAF) inhibited the phosphatase activity determined in the supernatant of living H. m. muscarum.


Protist | 2010

Leishmanolysin-like Molecules in Herpetomonas samuelpessoai Mediate Hydrolysis of Protein Substrates and Interaction with Insect

Fernanda M. Pereira; Felipe A. Dias; Camila G.R. Elias; Claudia M. d’Avila-Levy; Cristina S. Silva; Jacenir Reis dos Santos-Mallet; Marta H. Branquinha; André Luis Souza dos Santos

Herpetomonas samuelpessoai, an insect trypanosomatid, produces a 63-kDa metallopeptidase that has similar biochemical/immunological properties to Leishmania leishmanolysin, a virulence factor that participates in different stages of the parasite life cycle. Herein, we described some biochemical characteristics of the major surface metallopeptidase of H. samuelpessoai that led us to infer some probable functions for this peptidase during the parasite-invertebrate interaction. Gelatin-SDS-PAGE, flow cytometry and confocal fluorescence microscopy provided measurements for the relative levels of surface leishmanolysin-like molecules in H. samuelpessoai. Immunocytochemical analysis demonstrated the presence of leishmanolysin-like molecules on the surface and cytoplasm of the parasite. The surface metallopeptidase was active at a broad spectrum of pH and temperature, showing maximum activity at pH 6.0 at 37 degrees C, and an ability to degrade albumin, hemoglobin, IgG, mucin, casein and gut proteins obtained from Aedes aegypti. This wide substrate utilization might support parasite growth and development. Curiously, H. samuelpessoai cells were able to colonize A. aegypti guts. In an effort to implicate a possible role for the metallopeptidase from H. samuelpessoai, living parasites were treated with different compounds before the interaction with gut cells. The pre-incubation with metallopeptidase inhibitors, phospholipase C or anti-leishmanolysin antibodies promoted a significant reduction in the interaction with guts. Similarly, the pre-treatment of gut cells with purified leishmanolysin-like protein drastically diminished the adhesion process. Furthermore, the expression of surface leishmanolysin in H. samuelpessoai cells was drastically enhanced after passage in A. aegypti. These results suggest the participation of homologues of leishmanolysin in the interaction of H. samuelpessoai with the invertebrate vector.


Experimental Parasitology | 2008

Cysteine peptidases in the tomato trypanosomatid Phytomonas serpens: influence of growth conditions, similarities with cruzipain and secretion to the extracellular environment.

Camila G.R. Elias; Fernanda M. Pereira; Felipe A. Dias; Thiago L. Alves e Silva; Angela H. Lopes; Claudia M. d’Avila-Levy; Marta H. Branquinha; André Luis Souza dos Santos

We have characterized the cysteine peptidase production by Phytomonas serpens, a tomato trypanosomatid. The parasites were cultivated in four distinct media, since growth conditions could modulate the synthesis of bioactive molecules. The proteolytic profile has not changed qualitatively regardless the media, showing two peptidases of 38 and 40kDa; however, few quantitative changes were observed including a drastic reduction (around 70%) on the 40 and 38kDa peptidase activities when parasites were grown in yeast extract and liver infusion trypticase medium, respectively, in comparison with parasites cultured in Warren medium. The time-span of growth did not significantly alter the protein and peptidase expression. The proteolytic activities were blocked by classical cysteine peptidase inhibitors (E-64, leupeptin, and cystatin), being more active at pH 5.0 and showing complete dependence to reducing agents (dithiothreitol and l-cysteine) for full activity. The cysteine peptidases were able to hydrolyze several proteinaceous substrates, including salivary gland proteins from Oncopeltus fasciatus, suggesting broad substrate utilization. By means of agglutination, fluorescence microscopy, flow cytometry and Western blotting analyses we showed that both cysteine peptidases produced by P. serpens share common epitopes with cruzipain, the major cysteine peptidase of Trypanosoma cruzi. Moreover, our data suggest that the 40kDa cysteine peptidase was located at the P. serpens cell surface, attached to membrane domains via a glycosylphosphatidylinositol anchor. The 40kDa peptidase was also detected in the cell-free culture supernatant, in an active form, which suggests secretion of this peptidase to the extracellular environment.


PLOS Neglected Tropical Diseases | 2015

Monitoring of the Parasite Load in the Digestive Tract of Rhodnius prolixus by Combined qPCR Analysis and Imaging Techniques Provides New Insights into the Trypanosome Life Cycle

Felipe A. Dias; Bárbara Guerra; Larissa Rezende Vieira; Hugo Diego Perdomo; Ana Caroline P. Gandara; Raquel Juliana Vionette do Amaral; Renata Estebanez Vollú; Suzete Araujo Oliveira Gomes; Flávio Alves Lara; Marcos Henrique Ferreira Sorgine; Emiliano Medei; Pedro L. Oliveira; Didier Salmon

Background Here we report the monitoring of the digestive tract colonization of Rhodnius prolixus by Trypanosoma cruzi using an accurate determination of the parasite load by qPCR coupled with fluorescence and bioluminescence imaging (BLI). These complementary methods revealed critical steps necessary for the parasite population to colonize the insect gut and establish vector infection. Methodology/Principal Findings qPCR analysis of the parasite load in the insect gut showed several limitations due mainly to the presence of digestive-derived products that are thought to degrade DNA and inhibit further the PCR reaction. We developed a real-time PCR strategy targeting the T. cruzi repetitive satellite DNA sequence using as internal standard for normalization, an exogenous heterologous DNA spiked into insect samples extract, to precisely quantify the parasite load in each segment of the insect gut (anterior midgut, AM, posterior midgut, PM, and hindgut, H). Using combined fluorescence microscopy and BLI imaging as well as qPCR analysis, we showed that during their journey through the insect digestive tract, most of the parasites are lysed in the AM during the first 24 hours independently of the gut microbiota. During this short period, live parasites move through the PM to establish the onset of infection. At days 3–4 post-infection (p.i.), the parasite population begins to colonize the H to reach a climax at day 7 p.i., which is maintained during the next two weeks. Remarkably, the fluctuation of the parasite number in H remains relatively stable over the two weeks after refeeding, while the populations residing in the AM and PM increases slightly and probably constitutes the reservoirs of dividing epimastigotes. Conclusions/Significance These data show that a tuned dynamic control of the population operates in the insect gut to maintain an equilibrium between non-dividing infective trypomastigote forms and dividing epimastigote forms of the parasite, which is crucial for vector competence.


Journal of Biological Chemistry | 2013

Ovarian Dual Oxidase (Duox) Activity Is Essential for Insect Eggshell Hardening and Waterproofing

Felipe A. Dias; Ana Caroline P. Gandara; Fernanda G. Queiroz-Barros; Raquel Oliveira; Marcos Henrique Ferreira Sorgine; Glória R. C. Braz; Pedro L. Oliveira

Background: Hardening of the insect eggshell is due to peroxidases that promote protein cross-linking via H2O2, from an unknown source. Results: In Rhodnius prolixus, this H2O2 is produced by Duox, and it also contributes to waterproofing, preventing desiccation. Conclusion: H2O2 from Duox has a double role in protecting the Rhodnius eggshell. Significance: Duox activity is essential to insect reproduction. In insects, eggshell hardening involves cross-linking of chorion proteins via their tyrosine residues. This process is catalyzed by peroxidases at the expense of H2O2 and confers physical and biological protection to the developing embryo. Here, working with Rhodnius prolixus, the insect vector of Chagas disease, we show that an ovary dual oxidase (Duox), a NADPH oxidase, is the source of the H2O2 that supports dityrosine-mediated protein cross-linking and eggshell hardening. RNAi silencing of Duox activity decreased H2O2 generation followed by a failure in embryo development caused by a reduced resistance to water loss, which, in turn, caused embryos to dry out following oviposition. Phenotypes of Duox-silenced eggs were reversed by incubation in a water-saturated atmosphere, simultaneous silencing of the Duox and catalase genes, or H2O2 injection into the female hemocoel. Taken together, our results show that Duox-generated H2O2 fuels egg chorion hardening and that this process plays an essential role during eggshell waterproofing.

Collaboration


Dive into the Felipe A. Dias's collaboration.

Top Co-Authors

Avatar

Angela H. Lopes

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Marcos Henrique Ferreira Sorgine

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Pedro L. Oliveira

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Ana Caroline P. Gandara

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

André Luis Souza dos Santos

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Marta H. Branquinha

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Alexandre Romeiro

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Claudia M. d’Avila-Levy

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Didier Salmon

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge