Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felipe Augusto Cerni is active.

Publication


Featured researches published by Felipe Augusto Cerni.


Toxins | 2014

Electrophysiological Characterization of Ts6 and Ts7, K+ Channel Toxins Isolated through an Improved Tityus serrulatus Venom Purification Procedure

Felipe Augusto Cerni; Manuela Berto Pucca; Steve Peigneur; Caroline M. Cremonez; Karla de Castro Figueiredo Bordon; Jan Tytgat; Eliane C. Arantes

In Brazil, Tityus serrulatus (Ts) is the species responsible for most of the scorpion related accidents. Among the Ts toxins, the neurotoxins with action on potassium channels (α-KTx) present high interest, due to their effect in the envenoming process and the ion channel specificity they display. The α-KTx toxins family is the most relevant because its toxins can be used as therapeutic tools for specific target cells. The improved isolation method provided toxins with high resolution, obtaining pure Ts6 and Ts7 in two chromatographic steps. The effects of Ts6 and Ts7 toxins were evaluated in 14 different types of potassium channels using the voltage-clamp technique with two-microelectrodes. Ts6 toxin shows high affinity for Kv1.2, Kv1.3 and Shaker IR, blocking these channels in low concentrations. Moreover, Ts6 blocks the Kv1.3 channel in picomolar concentrations with an IC50 of 0.55 nM and therefore could be of valuable assistance to further designing immunosuppressive therapeutics. Ts7 toxin blocks multiple subtypes channels, showing low selectivity among the channels analyzed. This work also stands out in its attempt to elucidate the residues important for interacting with each channel and, in the near future, to model a desired drug.


Toxicon | 2015

Tityus serrulatus venom - a lethal cocktail

Manuela Berto Pucca; Felipe Augusto Cerni; Ernesto Lopes Pinheiro Júnior; Karla de Castro Figueiredo Bordon; Fernanda Gobbi Amorim; Francielle Almeida Cordeiro; Heloisa Tavoni Longhim; Caroline M. Cremonez; Guilherme Honda de Oliveira; Eliane C. Arantes

Tityus serrulatus (Ts) is the main scorpion species of medical importance in Brazil. Ts venom is composed of several compounds such as mucus, inorganic salts, lipids, amines, nucleotides, enzymes, kallikrein inhibitor, natriuretic peptide, proteins with high molecular mass, peptides, free amino acids and neurotoxins. Neurotoxins are considered the most responsible for the envenoming syndrome due to their pharmacological action on ion channels such as voltage-gated sodium (Nav) and potassium (Kv) channels. The major goal of this review is to present important advances in Ts envenoming research, correlating both the crude Ts venom and isolated toxins with alterations observed in all human systems. The most remarkable event lies in the Ts induced massive releasing of neurotransmitters influencing, directly or indirectly, the entire body. Ts venom proved to extremely affect nervous and muscular systems, to modulate the immune system, to induce cardiac disorders, to cause pulmonary edema, to decrease urinary flow and to alter endocrine, exocrine, reproductive, integumentary, skeletal and digestive functions. Therefore, Ts venom possesses toxins affecting all anatomic systems, making it a lethal cocktail. However, its low lethality may be due to the low venom mass injected, to the different venom compositions, the body characteristics and health conditions of the victim and the local of Ts sting. Furthermore, we also described the different treatments employed during envenoming cases. In particular, throughout the review, an effort will be made to provide information from an extensive documented studies concerning Ts venom in vitro, in animals and in humans (a total of 151 references).


Peptides | 2016

Isolation and characterization of Ts19 Fragment II, a new long-chain potassium channel toxin from Tityus serrulatus venom

Felipe Augusto Cerni; Manuela Berto Pucca; Fernanda Gobbi Amorim; Karla de Castro Figueiredo Bordon; Julien Echterbille; Loïc Quinton; Edwin De Pauw; Steve Peigneur; Jan Tytgat; Eliane C. Arantes

Ts19 Fragment II (Ts19 Frag-II) was first isolated from the venom of the scorpion Tityus serrulatus (Ts). It is a protein presenting 49 amino acid residues, three disulfide bridges, Mr 5534Da and was classified as a new member of class (subfamily) 2 of the β-KTxs, the second one described for Ts scorpion. The β-KTx family is composed by two-domain peptides: N-terminal helical domain (NHD), with cytolytic activity, and a C-terminal CSαβ domain (CCD), with Kv blocking activity. The extensive electrophysiological screening (16 Kv channels and 5 Nav channels) showed that Ts19 Frag-II presents a specific and significant blocking effect on Kv1.2 (IC50 value of 544±32nM). However, no cytolytic activity was observed with this toxin. We conclude that the absence of 9 amino acid residues from the N-terminal sequence (compared to Ts19 Frag-I) is responsible for the absence of cytolytic activity. In order to prove this hypothesis, we synthesized the peptide with these 9 amino acid residues, called Ts19 Frag-III. As expected, Ts19 Frag-III showed to be cytolytic and did not block the Kv1.2 channel. The post-translational modifications of Ts19 and its fragments (I-III) are also discussed here. A mechanism of post-translational processing (post-splitting) is suggested to explain Ts19 fragments production. In addition to the discovery of this new toxin, this report provides further evidence for the existence of several compounds in the scorpion venom contributing to the diversity of the venom arsenal.


Journal of Immunotoxicology | 2014

Serrumab: a novel human single chain-fragment antibody with multiple scorpion toxin-neutralizing capacities.

Manuela Berto Pucca; Felipe Augusto Cerni; Steve Peigneur; Eliane C. Arantes; Jan Tytgat; José Elpidio Barbosa

Abstract In Brazil, scorpion envenomation is an important public health problem. The yellow scorpion, Tityus serrulatus (Ts), is considered the most dangerous species in the country, being responsible for the most severe clinical cases of envenomation. Currently, the administration of serum produced in horses is recognized and used as a treatment for accidents with scorpions. However, horse herds’ maintenance is costly and the antibodies are heterologous, which can cause anaphylaxis and Serum Sickness. In the present work, a human monoclonal fragment antibody, Serrumab, has been analysed. Toxin neutralizing effects of Serrumab were evaluated using a two-electrode voltage-clamp technique. The results show that Serrumab presented a high neutralizing effect against Ts β-toxins (Ts1, 43.2% and Ts2, 68.8%) and none or low neutralizing effect against α-toxins (Ts3, 0% and Ts5, 10%). Additional experiments demonstrated that Serrumab was also able to neutralize the action of toxins from other scorpion genus (Css II, 45.96% and Lqh III, 100%/β- and α-toxins, respectively). This work indicated that Serrumab is able to neutralize many toxins in Ts venom, and could being considered as a neutralizing antibody for formulating a human anti-scorpion serum in Brazil. Additionally, this work demonstrated that Serrumab could neutralize different toxins from distinct scorpion genus. All these results reinforce the idea that Serrumab is a scFv antibody with multiple neutralizing capacities and a promising candidate for inclusion in scorpion anti-venoms against different genera.


Toxins | 2015

Revealing the Function and the Structural Model of Ts4: Insights into the “Non-Toxic” Toxin from Tityus serrulatus Venom

Manuela Berto Pucca; Felipe Augusto Cerni; Steve Peigneur; Karla C. F. Bordon; Jan Tytgat; Eliane C. Arantes

The toxin, previously described as a “non-toxic” toxin, was isolated from the scorpion venom of Tityus serrulatus (Ts), responsible for the most severe and the highest number of accidents in Brazil. In this study, the subtype specificity and selectivity of Ts4 was investigated using six mammalian Nav channels (Nav1.2→Nav1.6 and Nav1.8) and two insect Nav channels (DmNav1 and BgNav). The electrophysiological assays showed that Ts4 specifically inhibited the fast inactivation of Nav1.6 channels, the most abundant sodium channel expressed in the adult central nervous system, and can no longer be classified as a “non-toxic peptide”. Based on the results, we could classify the Ts4 as a classical α-toxin. The Ts4 3D-structural model was built based on the solved X-ray Ts1 3D-structure, the major toxin from Ts venom with which it shares high sequence identity (65.57%). The Ts4 model revealed a flattened triangular shape constituted by three-stranded antiparallel β-sheet and one α-helix stabilized by four disulfide bonds. The absence of a Lys in the first amino acid residue of the N-terminal of Ts4 is probably the main responsible for its low toxicity. Other key amino acid residues important to the toxicity of α- and β-toxins are discussed here.


Biochimie | 2015

Electrophysiological characterization of the first Tityus serrulatus alpha-like toxin, Ts5: Evidence of a pro-inflammatory toxin on macrophages

Manuela Berto Pucca; Steve Peigneur; Camila T. Cologna; Felipe Augusto Cerni; Karina F. Zoccal; Karla de Castro Figueiredo Bordon; Lúcia Helena Faccioli; Jan Tytgat; Eliane C. Arantes

Tityus serrulatus (Ts) venom is composed of mainly neurotoxins specific for voltage-gated K(+) and Na(+) channels, which are expressed in many cells such as macrophages. Macrophages are the first line of defense invasion and they participate in the inflammatory response of Ts envenoming. However, little is known about the effect of Ts toxins on macrophage activation. This study investigated the effect of Ts5 toxin on different sodium channels as well as its role on the macrophage immunomodulation. The electrophysiological assays showed that Ts5 inhibits the rapid inactivation of the mammalian sodium channels Nav1.2, Nav1.3, Nav1.4, Nav1.5, Nav1.6 and Nav1.7. Interestingly, Ts5 also inhibits the inactivation of the insect Drosophila melanogaster sodium channel (DmNav1), and it is therefore classified as the first Ts α-like toxin. The immunological experiments on macrophages reveal that Ts5 is a pro-inflammatory toxin inducing the cytokine production of tumor necrosis factor (TNF)-α and interleukin (IL)-6. On the basis of recent literature, our study also stresses a possible mechanism responsible for venom-associated molecular patterns (VAMPs) internalization and macrophage activation and moreover we suggest two main pathways of VAMPs signaling: direct and indirect. This work provides useful insights for a better understanding of the involvement of VAMPs in macrophage modulation.


Biochimica et Biophysica Acta | 2017

Minor snake venom proteins: Structure, function and potential applications

Johara Boldrini-França; Camila T. Cologna; Manuela Berto Pucca; Karla de Castro Figueiredo Bordon; Fernanda Gobbi Amorim; Fernando Antonio Pino Anjolette; Francielle Almeida Cordeiro; Gisele A. Wiezel; Felipe Augusto Cerni; Ernesto Lopes Pinheiro-Júnior; Priscila Yumi Tanaka Shibao; Isabela Gobbo Ferreira; Isadora Sousa de Oliveira; Iara Aimê Cardoso; Eliane C. Arantes

Snake venoms present a great diversity of pharmacologically active compounds that may be applied as research and biotechnological tools, as well as in drug development and diagnostic tests for certain diseases. The most abundant toxins have been extensively studied in the last decades and some of them have already been used for different purposes. Nevertheless, most of the minor snake venom protein classes remain poorly explored, even presenting potential application in diverse areas. The main difficulty in studying these proteins lies on the impossibility of obtaining sufficient amounts of them for a comprehensive investigation. The advent of more sensitive techniques in the last few years allowed the discovery of new venom components and the in-depth study of some already known minor proteins. This review summarizes information regarding some structural and functional aspects of low abundant snake venom proteins classes, such as growth factors, hyaluronidases, cysteine-rich secretory proteins, nucleases and nucleotidases, cobra venom factors, vespryns, protease inhibitors, antimicrobial peptides, among others. Some potential applications of these molecules are discussed herein in order to encourage researchers to explore the full venom repertoire and to discover new molecules or applications for the already known venom components.


Journal of Venomous Animals and Toxins Including Tropical Diseases | 2011

Experimental Tityus serrulatus scorpion envenomation: age- and sex-related differences in symptoms and mortality in mice

Manuela Berto Pucca; Eduardo Crosara Roncolato; Lucas Benício Campos; Fernandes Fs; Mendes Gr; Thaís Barboza Bertolini; Felipe Augusto Cerni; José Elpidio Barbosa

Among the various methods for evaluating animal venom toxicity, the calculation of the median lethal dose (LD50) is the most widely used. Although different protocols can be used to calculate the LD50, the source of the venom and the method of extraction, as well as the strain, age, and sex of the animal model employed, should be taken into consideration. The objective of the present study was to evaluate the influence of sex and age on the toxicity of Tityus serrulatus scorpion venom in Swiss mice. Although the symptoms of envenomation were similar in male and female animals, female mice proved to be more resistant to the venom. In females, age had no impact on the susceptibility to scorpion envenomation. Male mice were more sensitive to T. serrulatus venom. Moreover, in males, age was an important parameter since sensitivity to the venom increased with age.


Toxicon | 2018

Pros and cons of different therapeutic antibody formats for recombinant antivenom development

Andreas Hougaard Laustsen; José María Gutiérrez; Cecilie Knudsen; Kristoffer H. Johansen; Erick Bermúdez-Méndez; Felipe Augusto Cerni; Jonas A. Jürgensen; Line Ledsgaard; Andrea Martos-Esteban; Mia Øhlenschlæger; Urska Pus; Mikael Rørdam Andersen; Bruno Lomonte; Mikael Engmark; Manuela Berto Pucca

&NA; Antibody technologies are being increasingly applied in the field of toxinology. Fuelled by the many advances in immunology, synthetic biology, and antibody research, different approaches and antibody formats are being investigated for the ability to neutralize animal toxins. These different molecular formats each have their own therapeutic characteristics. In this review, we provide an overview of the advances made in the development of toxin‐targeting antibodies, and discuss the benefits and drawbacks of different antibody formats in relation to their ability to neutralize toxins, pharmacokinetic features, propensity to cause adverse reactions, formulation, and expression for research and development (R&D) purposes and large‐scale manufacturing. A research trend seems to be emerging towards the use of human antibody formats as well as camelid heavy‐domain antibody fragments due to their compatibility with the human immune system, beneficial therapeutic properties, and the ability to manufacture these molecules cost‐effectively. HighlightsComprehensive overview of reported antibodies against animal toxins.Pros and cons of antibody formats is discussed.Pharmacokinetics and pharmacodynamics of antibodies and their fragments.Trends in recombinant antivenom development are presented.


Toxicology Letters | 2017

Investigating possible biological targets of Bj-CRP, the first cysteine-rich secretory protein (CRISP) isolated from Bothrops jararaca snake venom

Marina E. Lodovicho; Tássia R. Costa; Carolina P. Bernardes; Danilo L. Menaldo; Karina F. Zoccal; Sante E.I. Carone; José Cesar Rosa; Manuela Berto Pucca; Felipe Augusto Cerni; Eliane C. Arantes; Jan Tytgat; Lúcia Helena Faccioli; Luciana S. Pereira-Crott; Suely V. Sampaio

Cysteine-rich secretory proteins (CRISPs) are commonly described as part of the protein content of snake venoms, nevertheless, so far, little is known about their biological targets and functions. Our study describes the isolation and characterization of Bj-CRP, the first CRISP isolated from Bothrops jararaca snake venom, also aiming at the identification of possible targets for its actions. Bj-CRP was purified using three chromatographic steps (Sephacryl S-200, Source 15Q and C18) and showed to be an acidic protein of 24.6kDa with high sequence identity to other snake venom CRISPs. This CRISP was devoid of proteolytic, hemorrhagic or coagulant activities, and it did not affect the currents from 13 voltage-gated potassium channel isoforms. Conversely, Bj-CRP induced inflammatory responses characterized by increase of leukocytes, mainly neutrophils, after 1 and 4h of its injection in the peritoneal cavity of mice, also stimulating the production of IL-6. Bj-CRP also acted on the human complement system, modulating some of the activation pathways and acting directly on important components (C3 and C4), thus inducing the generation of anaphylatoxins (C3a, C4a and C5a). Therefore, our results for Bj-CRP open up prospects for better understanding this class of toxins and its biological actions.

Collaboration


Dive into the Felipe Augusto Cerni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Tytgat

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steve Peigneur

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge